
 APL Special Edition Documentation

The documentation in this workspace consists of six chapters and a reminder
of how to print. The name of the APL variable, which is a character vector,
is: To_Print

If you want to read this reminder, simply type

 To_Print

at the prompt. APL names are case sensitive, so you must type it exactly
as above.

The documentation chapters include:

SE_CH01 Terminology and the Keyboard
SE_CH02 Using APL
SE_CH03 Writing Your Own Functions
SE_CH04 Function Reference -- Arithmetic Functions
SE_CH05 Function Reference -- Structural Functions
SE_CH06 Function Reference -- General Functions, Operators and Other Symbols

If you print out just Chapters 1 and 2, you can get started using APL.
→

 APL Special Edition Documentation

Reminder of How to Print

To print a chapter of the documentation, or indeed any variable in a workspace,
you must:

At the DOS prompt,
 run APLPRINT
 Start APLSE

In APL,
 :load PRINTERS
 run SELECT ; function names are case sensitive
 <Within SELECT, you select a printer type and port:
 :load INITIAL
 type 10 ▭arbin varname

 where varname is the name of the variable you want to print, for example
 SE_CH06 -- You get the quad symbol <▭: by typing Alt+L.

 With some laser printers, you may want to catenate a Form Feed character
 to force the last page, so your statement looks like this:

 10 ▭arbin SE_CH06,▭tcff
→

 APL Special Edition Documentation

Chapter 1. Terminology and the Keyboard

1.1 First, Some Terminology

When you start APL, you are in the session manager in immediate execution mode.
Immediate execution mode means you can type a single statement and have the
system evaluate <execute: it. For example, type: 3+5 <and press Enter:.

Note that you start at the six-space indent; the system returns its output, if
any <you can think of it as an answer, a response, or a result:, at the left
margin.

The alternative to being in the session manager is to be in an edit session,
where you can create a program or a variable. You can create a program of
your own <called a function in APL: containing multiple statements, which the
system will run <execute: as a unit. Or you can create a named variable,
which can be of various sizes, shapes and content. <More about this later.:

The session manager is the interface between you, the user, and the system
<the interpreter:. The "container" for your work is called a workspace. You
can name and save workspaces and reload them from disk. For example, the
INITIAL workspace contains this documentation.

You manage workspaces with system commands, which start with a right
parenthesis. When you loaded the INITIAL workspace, you typed: :LOAD initial

To remove the contents of a workspace from memory, type: :CLEAR
Do this now. This leaves the contents of INITIAL unchanged on your disk and
provides an "empty" container for your subsequent work. After you create
something in a workspace, if you want to save your work, type: :SAVE followed
by the name under which you want to save the workspace file on your disk.

1.2 Finding, Learning, and Using the APL Font

Before you started this session, you ran the command aplfont. APL uses a
number of special symbols to manipulate data. Some of these symbols are part
of the normal keyboard. For example, you use the asterisk <star: to raise a
number to a power. The statement 2*4 returns 16. In this example, the
function represented by the asterisk has a left argument and a right argument
<2 and 4 respectively:. This is called a dyadic function.

When you use the asterisk with only a right argument, the result is the value e
raised to the power of the right argument. The statement *2 gives e-squared.
In this case, the asterisk is a monadic function. Thus, you can think of the
asterisk as two different functions: Used monadically, the result is
exponentiation; used dyadically, the result is a power. <You can also think of
it as one function with a default left argument.:

Many of the APL symbols have multiple uses. Those symbols that are not part of
the normal keyboard are part of the aplfont you installed to start this session.
You can generate those symbols by pressing the Alt key plus another key from
the keyboard or by pressing Shift+Alt+ another key. There is a table at the
end of this chapter that shows the keys and symbols. Chapters 4-6 provide a
summary of each of the primitive functions.

1.3 Moving Around in the Session

The session is the location where you type APL statements in immediate
execution mode. It is also a record of what you have done and the results
you obtained. You can scroll through the session with the cursor keys. There
are many other keys and keystroke combinations that you can use. If you type
Ctrl+H, there is a series of help panels that summarize the various keystrokes.

One feature of particular note: You can edit any line in the session and
execute it simply by pressing the Enter key with the cursor on that line. You
do not have to retype the whole line or move it to the bottom of the session.
This allows you to correct mistakes easily or experiment with statements.

1.4 The Keyboard

The diagram below is a rough approximation of the location of the APL symbols
on a standard 101-key layout keyboard. In a group of three symbols, you get
the not-so-obvious one by pressing Alt+ the key. If there is a second
not-so-obvious symbol, press Shift+Alt+ the key. The list that follows the
diagram shows the various APL symbols along with the name used to refer to
each symbol and the names of the primitive functions it represents or the use
for the symbol. If there are two functions, the first one is usually the
monadic function. The list is arranged in order of the normal keyboard from
top to bottom, left to right, but separating the letter keys and symbol keys.

`H◊I 1J¨≡ 2@¯O 3#<R 4$≤U 5%=X 6∧≥[7&>⊖ 8*≠b 9<∨e 0:∧f -_×J =+÷i

 qQ? wWl eEmn rRo tTH yY↑ uU↓ iIr oO○ pP* [u←w]y→z \¦}~

 aA� sS⌈ dD⌊ fF_ gG� hH�� jJ� kK' lL▭ ;:� '"�

 zZ⊂ xX⊃ cC∩ vV∪ bB� nN� mM� ,<; .>� /?�

-------------------------------- TOP ROW KEYS --------------------------------
UNSHIFTED SHIFTED ALT+ SHIFT+ALT+

 ` H tilde ◊ diamond I catbar
uleft of 1y <logical: NOT ustatement Catenate ufirsty
unot usedy Without separatory

 1 J bang ¨ unot used ≡ equivalent
 Factorial in APLSEy Match
 Binomial

 2 @ at sign ¯ high minus O del-tilde
 unot usedy udesignates a Lock function
 negative numbery uuse with cautionJy

 3 # octothorpe < less than R downgrade
 unot usedy Less Than Numeric Grade Down
 Character Grade Down

 4 $ dollar sign ≤ less than/equal U upgrade
 unot usedy Less Than or Equal Numeric Grade Up
 Character Grade Up

 5 % percent = equal X rotate
 unot usedy Equal Reverse ulasty
 Rotate ulasty

 6 ∧ caret ≥ grtr than/equal [transpose
 <logical: AND Greater Than Transpose
 or Equal

 7 & ampersand > greater than ⊖ rotate bar
 unot usedy Greater Than Reverse ufirsty
 Rotate ufirsty

 8 * asterisk ≠ not equal b logarithm
 Exponential Not Equal Natural Logarithm
 Power Logarithm

 9 < left paren ∨ or e nor
 uused to group <logical: OR <logical: NOR

 or separatey

 0 : right paren ∧ and f nand
 Recall statement <logical: AND <logical: NAND
 ufirst char of usame as Shift+6y
 system commandsy

- minus sign _ underscore × times J bang
Negate uused in names Signum usame as Shift+1y
Subtract of objectsy Multiply

= equal + plus sign ÷ division sign i domino
Equal Conjugate Reciprocal Matrix Inverse
 Add Divide Matrix Divide

--------------------------- SECOND ROW SYMBOL KEYS ---------------------------
UNSHIFTED SHIFTED ALT+ SHIFT+ALT+

[left bracket u left brace ← left arrow w Quote-quad
uused to indexy unot usedy Assign Prompt ufor character
 input/output to terminaly

] right bracket y right brace → right arrow z zilde
uused to indexy unot usedy Branch uempty vectory

[] Index Into
[]← Index Assign

\ backslash ¦ split stile } left tack ~ right tack
Expand ulasty Magnitude unot usedy unot usedy
Scan <Operator: Residue

---------------------------- THIRD ROW SYMBOL KEYS ----------------------------
UNSHIFTED SHIFTED ALT+

; semicolon : colon � hydrant
dimension separator ulast character Execute
 of labely

' single quote " double quote � thorn
Character string delimiter unot usedy Format / Pattern Format

--------------------------- BOTTOM ROW SYMBOL KEYS ---------------------------
UNSHIFTED SHIFTED ALT+

, comma < less than ; lamp
Ravel / Catenate ulasty usame as Alt+3y comment designator

. period > greater than � backslash-bar
Inner Product operator usame as Alt+7y Expand ufirsty
uused with jot for �. Scan ufirsty operator
Outer Product operatory

/ slash ? question mark � slash-bar
Compress ulasty Roll / Deal Compress ufirsty
Reduction ulasty operator usame as Alt+Qy Reduction ufirsty operator

--------------------------- SECOND ROW LETTER KEYS ---------------------------
KEY SYMBOL / NAME FUNCTION<S:

Alt+Q ? question mark Roll / Deal
Alt+W l omega unot usedy
Alt+E m epsilon Member Of
Shift+Alt+E n epsilon-underscore Find

Alt+R o rho Shape / Reshape
Alt+T H tilde NOT / Without
Alt+Y ↑ up arrow Take
Alt+U ↓ down arrow Drop
Alt+I r iota Index Generate / Index Of
Alt+O ○ circle Pi Times / Trigonometric functions
Alt+P * asterisk Exponential / Power usame as Shift+8y

---------------------------- THIRD ROW LETTER KEYS ----------------------------
KEY SYMBOL / NAME FUNCTION<S: / USES

Alt+A � alpha unot usedy
Alt+S ⌈ ceiling Ceiling / Maximum
Alt+D ⌊ floor Floor / Minimum
Alt+F _ underscore usame as Shift+minus signy
Alt+G � del Function Definition / ualso used with
 lamp for public comments ;�y
Alt+H � delta uused in names of objectsy
Shift+Alt+H � delta-underscore uused in names of objectsy
Alt+J � jot <with period �.y Outer Product operator
Alt+K ' single quote delimiter usame as unshifted quote keyy
Alt+L ▭ quad Prompt for numeric <evaluated: input /
 Output to terminal / ualso used as
 first character of system functions,
 variables, and constantsy

--------------------------- BOTTOM ROW LETTER KEYS ---------------------------
KEY SYMBOL / NAME FUNCTION<S:

Alt+Z ⊂ enclose unot used in APLSEy
Alt+X ⊃ disclose unot used in APLSEy
Alt+C ∩ intersection unot usedy
Alt+V ∪ union unot usedy
Alt+B � decode Base Value
Alt+N � encode Representation
Alt+M � stile Magnitude / Residue
→

 APL Special Edition Documentation

Chapter 2. Using APL

2.1 APL is Powerful

APL is a powerful programming language. One of its greatest strengths is that
it handles entire arrays of data as single objects. This document explains
some of the terms and functions of APL. It will also demonstrate many more
without explicit definition in the course of explaining the basics. This
document can get you started using APL and show you that there are many tools
for you to use. The possibilities for learning are endless.

To get started, we will do some simple addition. You can execute all
statements that are indented six spaces.

 2 + 5
7
 1 2 3 + 4 5 6
5 7 9

A string of numbers is called a vector. You can assign a single value or a
string to a variable name. You use the left arrow for assignment.
 vec_a ← 11 9 7

You can add a scalar <one number: to a vector or you can add another vector of
the same length. When you add a scalar, the scalar is added to each of the
elements of the vector. When you add two vectors, the corresponding elements
are added. Note that spaces are not necessary between a number and a function
symbol; you must have at least one to separate numbers in a vector.

 vec_a+4
15 13 11
 vec_a +8 22.5 ¯3
19 31.5 4

Note that negative numbers are designated with a high minus and not the normal
minus sign, which is used for subtraction. It is typical of APL that
expressions have a distinct meaning. Thus, 5 ¯3 is a two-element vector,
consisting of the values five and negative three; 5 -3 is an expression using
the Minus function: its value is two. You cannot have a space between a high
minus and its corresponding numeral.

Besides the many functions that perform arithmetic calculations on arrays, APL
has structural functions that reorganize the data or select subsets of it.
 Xvec_a
7 9 11

Although APL expressions are unambiguous, many symbols do double duty. The phi
symbol used monadically, as above, is called Reverse. If you use it
dyadically, that is, with a left argument, it is called Rotate. Naturally,
Rotate does something different than Reverse.

 1Xvec_a
9 7 11
 2 X vec_a
7 11 9
 3 Xvec_a
11 9 7

Note that vec_a is unchanged by these manipulations. The result of applying a
function to vec_a gives the result. You can assign a new value to vec_a with
the assignment arrow in the same statement that manipulates it.

 vec_a
11 9 7

 vec_a ← vec_a,5 3 1

Note that there is no explicit result displayed when you assign the result.

 vec_a
11 9 7 5 3 1

You can create variables of greater dimensions. Reshape, the rho symbol used
dyadically, allows you to specify how you want your data. To make a matrix,
which is a two-dimensional array, use a vector of length two as the left
argument to Reshape.

 mat_a ← 2 3 o vec_a
 mat_a
11 9 7
 5 3 1

The last dimension is the number of columns in the matrix. If you have only
one dimension, that is, a vector, the dimension is the number of elements. The
vector vec_a has six elements; the matrix mat_a has two rows and three columns.

Another often used primitive function is the index generator, monadic iota.
It gives a sequence of numbers from one up to the value of the right argument.

 r6
1 2 3 4 5 6

You can use iota to construct almost any regular sequence of numbers in an
arithmetic or geometric progression.

 11-r10
10 9 8 7 6 5 4 3 2 1

 2*r4
2 4 8 16

As you see from the above statements, you can combine primitive functions in
one statement.

 mat_b←2 3or6
 mat_b
1 2 3
4 5 6

Try some simple arithmetic statements:

 mat_a + mat_b
 mat_a - mat_b
 mat_a × mat_b
 mat_a ÷ mat_b
 mat_a * mat_b
 mat_a ⌊ mat_b

Try some simple structural statements. <The lamp symbol <;: defines everything
to the right as a comment. You will find this useful in writing functions.:

 mat_a , mat_b ; This new matrix has 2 rows and 6 columns
 mat_a I mat_b ; This new matrix has 4 rows and 3 columns
 Xmat_a
 ⊖mat_b
 [mat_a ; This new matrix has 3 rows and 2 columns

Note that the first Catenate function <comma: works along the last dimension,
the columns. The second Catenate function <catbar: works along the first
dimension, the rows. This correspondence of functions is true for several other
functions as well, for example, the Reverse functions <phi and theta:.

You can also create arrays of greater dimension by catenating and adding a

dimension. You do this by specifying a fractional dimension with the function.
 mat_a,[0.5]mat_b
11 9 7
 5 3 1

 1 2 3
 4 5 6

This is a three-dimensional array with two planes, each of which has two rows
and three columns. You could get the same array by specifying:
 2 2 3 o mat_aImat_b

You can see the difference between this three dimensional array and the two-
dimensional array for four rows and three columns that you created using just
the catbar <I: by the extra blank row between the planes.

You can get other arrangements of the same data by inserting the new dimension
at a different spot. Experiment with mat_a,[1.5]mat_b and mat_a,[2.5]mat_b.

You can use monadic rho <Shape: to determine or confirm the shape of results
or variables. For example; omat_a,[1.5]mat_b

2.2 The Order of the Universe

The fundamental concept of understanding APL statements is that the order of
execution is from right to left. In the last example, the comma is one
function, Catenate, which takes a right argument and a left argument. The rho
symbol, Shape, is another function, which takes <in this case: only a right
argument. The Catenate is performed first; the result of that function becomes
the argument to Shape.

Similarly, arithmetic functions are executed from right to left regardless of
what they are. There is no hierarchy of functions.
 6+5×4
26
 5×4+6
50
 5×4,6
20 30
 6,5×4
6 20
 or6
6

Subtraction often surprises new users of APL; <6 minus 2 is evaluated first:.
 9-6-2
5
You can use parentheses to change the order of execution.
 <9-6:-2
1

2.3 Operators

Operators are a special category of APL primitives that modify functions.
Operators take one or more functions as an operand and the result is a derived
function that acts on one or two arrays.

The Reduction operator reduces the rank of its array argument. For example,
you can perform an arithmetic operation on a vector to get a scalar result.
The symbols for Reduction are the slash </: and the slash-bar <�:. The first
example below sums the values in the vector. The next examples multiply the
values in a matrix either by row or by column.

 vec_a
11 9 7 5 3 1
 +/vec_a
36

 mat_a
11 9 7
 5 3 1
 ×/mat_a
693 15
 ×/[mat_a
55 27 7

Notice that the slash works along the last dimension. You can use slash-bar to
work along the first dimension. The equivalent of the last example is:
 ×�mat_a
55 27 7

The Scan operator, whose symbols are the backslash <\: and backslash-bar <�:,
performs its function on successively greater portions of the argument array.

 ÷\r6
1 0.5 1.5 0.375 1.875 0.3125

An important key to understanding this operator is that the first element of the
result is the first element of the argument <by definition:; the second element
of the result is the result of applying the function to the first two elements
of the argument; and so on. However, for each calculation, the expression is
evaluated from right to left. So, the second element of the result is 1÷2.
However, the third element of the result is <2÷3: divided into 1. The last
element of the result is:
 1÷<2÷<3÷<4÷<5÷6::::

As with other functions and the Reduction operator, the basic form operates
along the last dimension, while the backslash-bar operates along the first.

 mat_b
1 2 3
4 5 6
 -�mat_b
 1 2 3
¯3 ¯3 ¯3

Subtraction is particularly tricky operating from right to left.

 -\mat_b
1 ¯1 2
4 ¯1 5

The other two operators are inner product and outer product. See Chapter 6
for a brief description of their uses, and then try experimenting with all the
functions and operators.

2.4 Boolean functions and Selecting Data Items

 Boolean functions are essentially tests of two items to see if they meet
some criterion. If the answer is true, the result is 1; if not, the result is
zero. The first example below compares two matrices, position by position to
see if the value in the first is greater than the corresponding value in the
second. The next example checks whether the value of the left argument, in
this case 5, is contained in the right argument. The last example makes the
same check position by position.

 mat_a > mat_b
1 1 1
1 0 0

 5mvec_a
1
 5nvec_a
0 0 0 1 0 0

One common use for Boolean functions is to select a subset of data. To

demonstrate, we will create a matrix by multiplying our two sample matrices,
ravel the result into a vector, and select the elements evenly divisible by 3.

 vec_c←,mat_a × mat_b
11 18 21 20 15 6
 Bool← 0 = 3 � vec_c
 Bool
0 1 1 0 1 1
 newvec←Bool/vec_c
18 21 15 6

And you can sort the resulting values in ascending order:

 finalvec←newvec[Unewvec]
 finalvec
6 15 18 21

The statement using brackets is called indexing because it uses an index to
identify parts of an array. You can select one or more elements of any array
by specifying their indices.

 vec_a[2 4]
9 5
 mat_b[2; 3]
6

Note that the index to a matrix requires two values to specify one element,
in this case the second row, third column.

2.5 Character Data

While APL is extremely powerful manipulating numeric arrays, it is likewise
powerful manipulating character data. Although you cannot add letters, the
structural functions and Boolean functions enable you to do dramatic things
with very few statements.

You specify a character variable by putting single quotes around your data.

 char_vec_a←'How do you do?'
 ochar_vec_a
14

How many times does the letter o appear in your vector?

 +/'o'=char_vec_a
4

The last example, although compact, uses a Boolean function and an operator.
If you have trouble understanding how this works, break it down into steps
and check each intermediate result. <This is a good idea all the while you
are learning APL.:

 char_mat_a←7 6o'Brown Green White Black SilverRed Blue '

Choose all the names that start with the letter B. The semicolon-one inside
the brackets means the first column in all rows. Use the Boolean vector to
designate which rows of the matrix you want, using the Compress function on
the first dimension. Note that the backslash here is dyadic; hence it is the
Compress function and not the Reduction operator.

 'B'=char_mat_a[;1]
1 0 0 1 0 0 1
 <'B'=char_mat_a[;1]:�char_mat_a
Brown
Black
Blue

You can alphabetize the rows of the matrix easily.

 char_mat_a[▭avUchar_mat_a;]
Black
Blue
Brown
Green
Red
Silver
White

This is just a peek at the immense power of APL. Whatever your data or your
problem, you can do a huge amount of work quickly with APL. As you gain
familiarity with the functions and syntax, you will discover untold riches of
capability.
→

 APL Special Edition Documentation

Chapter 3. Writing Your Own Functions

3.1 Programming in APL

You have already seen how much you can do in APL just using immediate
execution mode. If you want to be able to perform calculations or actions
repeatedly with different arguments or data, you can write your own functions.
You are not restricted to the "program" format of other languages. You can
write a function to do as much or as little as you want it to, and then use
that function either standalone or in other statements.

For example, if you write a function named my_calc, you can simply execute the
function and have the system display the result in the session, just as it
displays the result of the statement 1+1 when you execute it.

Or you can assign the result of your function and use the variable with the
result. You might type res ← my_calc, and then use the variable res in a
statement such as b ← res+1.

You can also use your function in another statement, such as b← <my_calc+1: *2.
Additionally, you can call your function from another function, so that a second
function you write uses my_calc internally.

You can use a function to perform a small calculation with arguments you supply;
You can use a function like you would use a subroutine in another language.
Or you can use a function to encompass an entire program. It's in your hands.

3.2 Defining a Function

You define certain key information in the first line of your function, which we
call the header. A function can be dyadic <two arguments:, monadic <one
argument: or niladic <no arguments:. You also determine whether or not it
returns a result. And you give the function its name. The name is the only
required object in the header.

You invoke the function editor for a new function by typing :edit followed by a
space and the del <�: symbol <which is Alt+G on the keyboard:, followed by a
name <no space:; for example :edit �my_calc. You can save your work in memory
by typing Ctrl+E. If you want to go back to the function editor, just type
:edit followed by a space and the name you assigned the function:
:edit my_calc

Note that this does not save the function permanently. If you want to save
your work to disk, you must save the workspace by typing :save.

The header is line zero in the function. It contains from one to four names,
three of which are "dummy" variable names. They exist only within the function
and are, in essence, placeholders for the variables or values you will use when
you actually invoke the function. The syntax is as follows:

[0] result← left_arg fn_name right_arg

The function name is the only required element. If you do not want your
function to return an explicit result, you can omit the result variable and the
left arrow. If you do not want a left argument, you can omit that name. If
you put two names in the header <without the assignment arrow:, the first one
is the function name and the second is the single <right: argument. If you put
three names, the middle one is the function name. You can also have a result
with a function that has one or zero arguments. When you are ready to run the
function, you simply type its name in the session with values for whatever
arguments the function requires.

Note that having one dummy variable name as an argument does not limit you to
one value. A single right argument can be a vector or matrix of values. You
can use this array in calculations or you can put various values in it that you

use separately. For example, you could have a right argument of three values
representing interest rate, term, and loan amount. In your function, you can
assign the three values to separate variables:

[0] result ← calc_payment triple_argument
[1] interest ← triple_argument[1] ÷ 12
[2] loanlength ← triple_argument[2] × 12
[3] loanamount ← triple_argument[3]

This function supposes that you want a monthly payment. You divide the value
input for interest by 12 to get a monthly value and multiply the value for term
<assuming years: by 12 to get the number of months. Then, the payment
calculation is well known:

[4] result ← <loanamount × interest: ÷ <1 - <1 ÷ 1 + interest: * loanlength:

In the session, you invoke the function by typing:
 calc_payment .075 30 50000

Or you could assign a variable, t←.075 30 50000, and invoke the function with:
 calc_payment t

Once you have a function like calc_payment, you can change the values for
interest, term, and/or amount and see the effect on the monthly payment as
fast as you can type the numbers and press Enter.

3.3 Localization

It is an important concept in APL that the variables in a function header are
placeholders only for as long as the function is active. This is called
localization. In the example above, the variable named 'result' does not exist
after the function completes. You have a statement in your function that
assigns the result to this variable. If you just invoke the function, the
system displays the answer in the session. You can also assign the result to a
variable when you invoke the function.

 payment ← calc_payment .075 30 50000

If you do this, the variable named payment holds the answer. You can then use
this variable for further calculations in your session.

If you want to localize variables other than the result and arguments, you can
place their names in the header following the argument, separated by semicolons.
For example, the header above might look like this.

[0] result ← calc_payment triple_argument;interest;loanlength;loanamount

The value of doing this is twofold. It is tidy, in that no extraneous variables
are created in the workspace; and, it avoids unintended side effects where you
change something in the session. Typically, you might use short variable
names. You could write every function you ever wanted using the same variables,
and create no conflicts as long as the variables are localized.

[0] z← x fn_name y;r;s;t

As long as you use only r, s, t, x, y, and z in your function, you never create
a conflict, even if one function calls another.

[0] z← x fn_name_a y;r;s;t ; This is the header for fn_name_a
. . .
[4] r ← s fn_name_b t ; This statement calls another function.

[n] z← ; Calculation in function fn_name_a using r

[0] z← x fn_name_b y;r;s;t ; This is the header for fn_name_b
. . .
[m] z← ; Calculation in function fn_name_b using the values s and t within
 ; fn_name_a as arguments; these do not affect the use of s or t here.

Note that while you CAN use single letters as variable names, we recommend that
you use descriptive names. You will find it much easier to maintain or change
your code when your variable names provide information.

3.3 Program Flow -- Labels and Branches

Unless you specify otherwise, the system executes a function line by line until
it reaches the end. If you want to control the flow of execution within your
function, you can use the right arrow <→: to branch. You get the right arrow
from the keyboard immediately to the right of the left arrow, using Alt+ the
right bracket key.

If you branch to zero, you exit the function: [n] →0 You can branch to a line
number, but that isn't very good programming style, and it makes it hard to
modify your function. So, you can branch to a label. You choose an arbitrary
name for your label, and place the label followed by a colon <no space: on a
line of your function. Then you can branch to that line from anywhere in the
function, and the system begins execution on the next line. For example:

[0] my_sample_fn x;y;z
[1] . . .

[m+1] → initialize
[m+2] continue:
[m+3] . . .

[n-1] →0
[n] initialize:
[n+1] y←x+1
[n+2] z←<x+y:*2
[n+3] → continue

In this example, the branch at line [m+1] sends the program to line [n], where
some variables are initialized. At line [n+3] the program branches back to
line [m+2], whence it continues up to line [n-1]. At that point the function
exits. You might do this for convenience of reading your function. The
initialization process is at the end and out of the way of analyzing the main
thrust of the function.

You can also have conditional branches, using the Compress function <dyadic /:.
In this case you can construct a test, using a Boolean function, that returns a
one or a zero. If the result is one, the function branches; otherwise it
continues. You can use this technique to loop a number of times through a
portion of your function, for example.

[0] loop_fn
[1] i←0
[2] begin:
[3] i ← i+1
[4] . . .

[n] →<i≤10:/begin

The above example executes from line [3] through line [n] with the variable i
having the value 1. At line [n], it loops back to line [2], and continues to
execute until the variable i has a value greater than 10. When i becomes
greater than 10, the expression in parentheses is not true; therefore, it
returns zero, the branch is not performed, and the function ends because there
is nothing beyone line [n] to execute.

3.4 Conclusion

Other than branches, writing your own functions is very much like writing APL
in immediate execution. It simply packages a number of steps under the name
you assign and executes the steps as a unit.

This ends the instructional part of the documentation for APLSE. Chapters 4, 5

and 6 contain summary descriptions of all the basic APLSE functions. As you
can tell from this very brief introduction, APL has a richness of capability
unmatched by ordinary programming languages. As you use APL, you will discover
there are easy ways to do just about anything you want to do to manipulate
numeric or character data. Rounding numbers is done with ⌊n+.5, for example.

There are many areas that are not even touched on here. You can save data in
files. You can make changes in the computing environment. For example, if you
want all your sequences to start at zero instead of one, there is a system
variable, Index Origin, that you can set: ▭io←0

There are a number of organizations devoted to APL in the United States and
around the world. Some of these organizations produce regular publications to
which you can subscribe. There is a vast body of knowledge and technique that
you may discover in talking with someone who has used APL to actually build
applications.

If this rudimentary system interests you, Manugistics, Inc., produces
full-scale versions of APL for various platforms and operating systems,
including Unix, DOS, and Windows. These products go under the name APL*PLUS.

Commercial versions include sophisticated memory management, capacity for large
variables, many utilities and interfaces, and telephone support options. Call
<800: 592-0050 <in MD, <301: 984-5123; from outside the U.S., <301: 984-5412:
for more information about these advanced systems. Manugistics does not support
APL*PLUS SE, but a BBS forum is available by dialing <301: 984-5222 <full
duplex, up to 14.4Kbps,n,8,1:.

→

 APL Special Edition Documentation

Chapter 4. Function Reference -- Arithmetic Functions

Function descriptions below are given in the following format:

b Name ¦ symbol ◊ Definition in words
 Syntax ; Restrictions on arguments, if any
 Example <starting at six-space indent:
Result

Examples are usually given with vector arguments for simplicity and compactness.
Functions generally work with arrays of more dimensions.

Note: The word "conforming" when applied to the arguments of a dyadic function
means that the two arguments must agree in some manner; often, they must have
the same shape. When one argument is a scalar, the system extends it to
match the shape of the other argument.

res means result; arg means the argument to a monadic function; larg means left
argument and rarg means right argument to a dyadic function.

b Conjugate ¦ monadic + ◊ Return the value of arg
 res ← + arg ; where arg is any numeric array
 + 6 18.2 ¯5
6 18.2 ¯5

b Plus ¦ dyadic + ◊ Add larg to rarg
 res ← larg + rarg ; larg, rarg conforming numeric arrays
 ¯3 2 1 + 6 18.2 ¯5
3 20.2 ¯4

b Negate ¦ monadic - ◊ Change the sign of arg
 res ← - arg ; any numeric array
 - 6 18.2 ¯5
¯6 ¯18.2 5

b Minus ¦ dyadic - ◊ Subtract rarg from larg
 res ← larg - rarg ; larg, rarg conforming numeric arrays
 ¯3 2 1 - 6 18.2 ¯5
¯9 ¯16.2 6

b Signum ¦ monadic × ◊ Return the sign of arg
 res: 1 if arg is positive; 0 if arg is zero; ¯1 if arg is negative
 ; arg can be any numeric array
 × 6 18.2 ¯5 0
1 1 ¯1 0

b Times ¦ dyadic × ◊ Multiply larg by rarg
 res ← larg × rarg ; larg, rarg conforming numeric arrays
 ¯3 2 1 × 6 18.2 ¯5
¯18 36.4 ¯5

b Reciprocal ¦ monadic ÷ ◊ Return the reciprocal of arg <1 divided by arg:
 res ← ÷ arg ; any non-zero numeric array
 ÷ 6 18.2 ¯5
0.1666666667 0.05494505495 ¯0.2

b Divide ¦ dyadic ÷ ◊ Divide larg by rarg
 res ← larg ÷ rarg ; larg, rarg conforming numeric arrays;
 rarg must be non-zero except 0÷0 returns 1.
 ¯3 2 1 0 0 ÷ 6 18.2 ¯5 ¯1 0
¯0.5 0.1098901099 ¯0.2 0 1

b Exponential ¦ monadic * ◊ Raise the value e <2.71828...: to the power arg
 res ← * arg ; any numeric array
 * 6 18.2 ¯5
403.4287935 80197267.41 6.737946999E¯3

b Power ¦ dyadic * ◊ Raise larg to the power rarg
 res ← larg * rarg ; larg, rarg conforming numeric arrays
 6 18.2 ¯5 * ¯3 2 1
4.62962963E¯3 331.24 ¯5

b Natural log ¦ monadic b ◊ Compute the natural logarithm <base e: of arg
 res ← b arg ; any positive numeric array
 b 3 2.7182818284 1
1.098612289 1 0

b Logarithm ¦ dyadic b ◊ Compute the logarithm of rarg to the base larg
 res ← larg b rarg ; larg, rarg conforming positive numeric arrays
 2 49 4 b 8 7 0.25
3 0.5 ¯1

b Ceiling ¦ monadic ⌈ ◊ Round up to the nearest integer
 res ← ⌈ arg ; any numeric array
 ⌈ 3.14159 ¯1.5 6
4 ¯1 6

b Maximum ¦ dyadic ⌈ ◊ Select the larger of two numbers
 res ← larg ⌈ rarg ; larg, rarg conforming numeric arrays
 6 18.2 ¯5 ⌈ 3.14159 19.3 ¯4.9
6 19.3 ¯4.9

b Floor ¦ monadic ⌊ ◊ Round down to the nearest integer
 res ← ⌊ arg ; any numeric array
 ⌊ 3.14159 ¯1.5 6
3 ¯2 6

b Minimum ¦ dyadic ⌊ ◊ Select the smaller of two numbers
 res ← larg ⌊ rarg ; larg, rarg conforming numeric arrays
 6 18.2 ¯5 ⌊ 3.14159 19.3 ¯4.9
3.14159 18.2 ¯5

b Magnitude ¦ monadic � ◊ Return the absolute value of arg
 res← � arg ; any numeric array
 � 6 18.2 ¯5
6 18.2 5

b Residue ¦ dyadic � ◊ Find the remainder after dividing larg by rarg
 res ← larg � rarg ; larg, rarg conforming numeric arrays
 3 3 ¯3 ¯3 1 ¯1 0 � 7.2 ¯7.2 7.4 ¯7.4 7.6 ¯7.6 8.5
1.2 1.8 ¯1.6 ¯1.4 0.6 ¯0.6 8.5

 Note: 0 � n returns n; be careful with negative numbers in either argument
 The function explicitly is r - <⌊ r ÷ l: × l

b Factorial ¦ monadic J ◊ Compute the factorial of arg
 res ← J arg ; any numeric array, except negative integers
 J 0 5 2.5 ¯2.5
1 120 3.32335097 2.363271801

 Note: J 0 returns 1; for positive integers res is the product of r arg;
 all fractional numbers are computed using the gamma function on arg+1

b Binomial ¦ dyadic J ◊ Find the number of combinations of rarg objects
 selected larg at a time
 res ← larg J rarg ; larg, rarg conforming positive numeric arrays
 1 2 5 2.5 J 5
5 10 1 10.86497745

b Roll ¦ monadic ? ◊ Select a pseudorandom integer from the set r arg
 res ← ? arg ; any positive integer array
 ? 1995 18 3
1355 13 3

b Deal ¦ dyadic ? ◊ Select larg pseudorandom integers without
 duplicates from the set r rarg
 larg ? rarg ; larg, rarg non-negative integer scalars larg≤rarg
 8 ? 10
1 5 3 4 9 6 8 7

 Note: Deal produces no duplicate values in the result; if you want to
 maintain equal odds of selecting any number use <? larg o rarg:.

b Base value ¦ dyadic � ◊ Convert arg to the number system defined by larg
 res ← larg � rarg ; larg, rarg conforming numeric arrays
 7 24 60 � 2 2 2
3002

 Note: This example converts 2 days, 2 hours, 2 minutes to minutes.

b Representation¦dyadic � ◊ Represent rarg in the number system defined by larg
 res ← larg � rarg ; larg, rarg any numeric arrays
 0 5 8 � 666
16 3 2

 Note: This example converts hours to work weeks, work days and hours.

b Matrix inverse ¦ monadic i ◊ Calculate the inverse of a matrix
 res ← i arg ; any numeric scalar, vector, or matrix.
 Note: If arg is nonsingular, but not square, it must have more rows than
 columns; res is then the least squares approximation to the inverse.
 i 2 2 o 1 1 2 3
 3 ¯1
¯2 1

b Matrix divide ¦ dyadic i ◊ Solve a set of simultaneous equations
 res ← larg i rarg ; larg, rarg numeric scalars, vectors or matrices

 rank <# of dimensions: or rarg ≥ rank of larg
 Note: If rarg is a matrix and not square, it must have more rows than cols.
 14 26 i 2 2 o 1 3 4 2
5 3

 This example returns x, y where x+3y=14 and 4x+2y=26

b Pi times ¦ monadic ○ ◊ Multiply the value pi <3.14159...: by arg
 res ← ○ arg ; any numeric array
 ○ 0 1 2
0 3.141592654 6.283185307

 Note: This symbol is the circle, Alt+O <letter O:.

b Trigonometric functions ¦ dyadic ○ ◊ see below
 res ← larg ○ rarg ; larg, integer array ¯7 ≤ larg[r] ≤ 7
 rarg, valid numeric array measured in radians
 Note: larg specifies which of 15 functions is calculated.
 1 SIN 5 SINH ¯1 ARCSIN ¯5 ARCSINH
 2 COS 6 COSH ¯2 ARCCOS ¯6 ARCCOSH
 3 TAN 7 TANH ¯3 ARCTAN ¯7 ARCTANH
 4 <1+ rarg*2: *.5 ¯4 <¯1+ rarg *2: *.5 0 <1- rarg*2: *.5

 1○ 1.5708
1
 ¯1○ 1
1.570796327
 0○ .8
0.6
 4○ 2.4
2.6
 ¯4○ 2.6
2.4
→

 APL Special Edition Documentation

Chapter 5. Function Reference -- Structural Functions

The functions described in this chapter allow you to manipulate data in ways
other than arithmetic calculations. With these functions, you can arrange or
rearrange data in arrays, select subsets of your data in arrays, or a
combination of these actions.

Most of these functions work on either numeric arrays or character arrays. The
examples usually use numeric arrays; you can experiment with character arrays
to see the effects. Examples also are usually given with vector arguments;
these functions generally work with arrays of more dimensions.

Examples are usually given with small arguments for simplicity and compactness.
Several examples may be strung across the page to save space, using the pound
sign <#: as a separator. APL would not literally provide the output as shown.

b Name ¦ symbol ◊ Description in words
 Syntax ; Restrictions on arguments, if any
 Explanation of the result <if necessary:
 Example <starting at six-space indent:
Result

res means result; arg means the argument to a monadic function; larg means left
argument and rarg means right argument to a dyadic function.

b Index generator ¦ monadic r ◊ Return the set of integers up to arg
 res ← r arg ; any positive integer scalar
 r 5
1 2 3 4 5

b Index ¦ dyadic r ◊ Find the location of items in an array
 res ← larg r rarg ; larg, any vector; rarg, any array
 ; res is the index of the first occurrence in larg of each item of rarg.
 ; If larg does not contain the item, the item in res is one greater than the
 ; length of larg.
 1 2 3 4 3 2 1 r <2 2 o2 4 5 3:
2 4
8 3

b Shape ¦ monadic o ◊ Return the shape <length of each dimension: of arg
 res ← o arg ; any array
 ; Note: The shape of a scalar is blank <not zero:. A variable with zero
 ; shape is an empty vector.
 o 1 2 3 # o 'abc' # o 99 # oz
3 #3 # #0

b Reshape ¦ dyadic o ◊ Create an array of specific shape
 res ← larg o rarg ; larg, integer scalar or vector; rarg, any array
 ; res is the items of rarg selected in order and formed into the shape
 ; specified by larg. Some elements of rarg may be unused or duplicated.
 2 4 o 1 2 3
1 2 3 1
2 3 1 2

b Ravel ¦ monadic , ◊ Change an array into a vector
 res ← , arg ; any array
 ; res is all the items of arg in the same order as arg, but as a vector
 , 2 4 o r3
1 2 3 1 2 3 1 2

b Catenate ¦ dyadic , or I ◊ Join two arrays along a specified axis
 res← larg Irarg ◊ res← larg ,rarg ◊ res← larg ,[n]rarg ◊ res← larg I[n]rarg

 res contains all the items of larg and all the items of rarg; the shape of
 res depends on how you specify the function. If you specify catbar <I:, the
 arrays are joined along the first dimension; if you use the comma <,:, the
 arrays are joined along the last dimension. If you explictly specify an
 integer axis in brackets, the arrays are joined along that axis. If you
 specify a fractional value in brackets, the system creates a new dimension
 in between the integers nearest to [n].

 larg and rarg can be any arrays whose dimensions match along each axis other
 than the one specified; or either larg or rarg can be a scalar.

 a←1 2 3
 b←4 5 6
 a , b # a ,[1.5] b # 7 8 9 I a,[.5]b
 1 2 3 4 5 6 # 1 4 # 7 8 9
 a ,[.5] b # 2 5 # 1 2 3
 1 2 3 # 3 6 # 4 5 6
 4 5 6

b Reverse ¦ monadic ⊖ or X ◊ Reverse the order of arg along a specified axis
 res ← ⊖ arg ◊ res ← X arg ◊ res← ⊖[i] arg ◊ res ← X[i] arg
 ; If you use rotate-bar <⊖:, the system reverses along the first dimension.
 ; If you use rotate <X:, it reverses along the last dimension <columns:.
 ; If you specify an axis, [i] must be an integer scalar.
 a←2 3or6
 Xa # ⊖a # X'able was I'
 3 2 1 # 4 5 6 #I saw elba
 6 5 4 # 1 2 3

 You can experiment with specifying the axis with arrays of more dimensions.

b Rotate ¦ dyadic ⊖ or X ◊ Shift the elements of rarg along a specified
 axis in an amount designated by larg
 res← larg ⊖rarg ◊ res← larg Xrarg ◊ res←larg ⊖[i]rarg ◊ res← larg X[i]rarg
 ; larg, integer scalar or vector of length matching specified dimension
 ; of rarg; rarg, any array; i, non-negative integer scalar
 arg←3 3or9
 1 ⊖ arg # ¯1 X arg # 1 2 3 X arg
4 5 6 #3 1 2 #2 3 1
7 8 9 #6 4 5 #6 4 5
1 2 3 #9 7 8 #7 8 9

 You can experiment with specifying the axis with arrays of more dimensions.

b Transpose ¦ monadic or dyadic [◊ Reverse or reorder the axes of an array
 res← [arg ; arg, any array
 res← larg [rarg ; rarg, any array; larg, non-negative integer vector
 with length equal to rank <# of dimensions: of rarg
 arg←2 3o r6 # If rarg← 2 3 4or24 then the shape of the result is:
 [arg # statement shape of result <o res:
1 4 # [rarg 4 3 2
2 5 # 1 3 2 [rarg 2 4 3
3 6 # 3 2 1 [rarg 4 3 2

You can also experiment with dyadic transpose, using left arguments that use
integers starting with 1 and not skipping any numbers, but that repeat some
numbers and therefore do not specify every dimension.

b Take ¦ dyadic ↑ ◊ Select a set of elements from an array
 res ← larg ↑ rarg ; rarg, any array; larg, integer scalar or vector
 ; with one element for each dimension of rarg. You can take from the
 ; beginning of rarg with positive larg or from the end of rarg with
 ; negative larg. You can overtake, that is, you can specify more elements
 ; than exist in rarg. In this case, the system pads the result with zeroes
 ; for numeric rarg or with blanks for character rarg. The result will
 ; always have the shape of the absolute value of the left argument.
 2 ↑ r6 # ¯2 ↑r6 # 4 ↑r3 # 2 ¯2 ↑ 3 3 o r9
1 2 #5 6 #1 2 3 0 # 2 3
 # 5 6

b Drop ¦ dyadic ↓ ◊ Exclude a set of elements from an array
 res ← larg ↓ rarg ; rarg, any array; larg; integer scalar or vector
 ; with one element for each dimension or rarg. You can drop from the
 ; beginning of rarg with positive larg; you can drop from the end of rarg
 ; with negative larg. If you specify more elements than exist in rarg, the
 ; result is an empty array.
 2 ↓ r6 # ¯2 ↓r6 # 4 ↓ r3
3 4 5 6 #1 2 3 4 #

b Expand ¦ dyadic � or \ ◊ Expand rarg along a specified dimension, padding
 with blanks or zeroes where larg contains zeroes
 res← larg �rarg ◊ res← larg \rarg ◊ res← larg �[i]rarg ◊ res← larg \[i]rarg
 ; rarg, any array; larg consists of 1s and 0s, and must have as many 1s as
 ; rarg has elements along the specified dimension.
 # lettermat← 2 3 o 'abcdef'
 0 0 1 0 1 \ 2 3 # 1 0 1 � lettermat # 1 0 1 0 1 \ lettermat
0 0 2 0 3 # abc #a b c
 # #d e f
 # def

 The backslash symbols are also used for the Scan operator. See Chapter 6.

b Replicate ¦ dyadic � or / ◊ Select the elements of rarg along a specified
 dimension as many times as designated by larg
 res← larg �rarg ◊ res← larg /rarg ◊ res← larg �[i]rarg ◊ res← larg /[i]rarg
 ; rarg, any array; larg, non-negative integer scalar or vector with as many
 ; elements as rarg has along the specified dimension.
 1 2 3 /lettermat # 1 2� lettermat # 1 0 2 0 3 / 1 2 3 4 5
abbccc # abc # 1 3 3 5 5 5
deefff # def
 # def

 Note: The Replicate function is also called Compress; if you use a Boolean
 left argument <1s and 0s:, you select only those elements from larg
 that you want and squeeze out the others.

 The slash symbols are also used for the Reduction operator. See Chapter 6.

b Numeric Grade Up ¦ monadic U ◊ Return the ascending sort order of arg
 res ← U arg ; any numeric array
 ; This function works along the first dimension if the rank of arg ≥ 2.
 ; In the example below, the result shows the first element of rarg in
 ; ascending order is the fourth element.
 U 9 3 7 1 5
4 2 5 3 1

 Note: If you want to sort an array, use this index to reassign the items.
 vector← 5 8 3 8 4 2 5
 Uvector
6 3 5 1 7 2 4

 vector ← vector[Uvector]
 vector
2 3 4 5 5 8 8

b Numeric Grade Down ¦ monadic R ◊ Return the descending sort order of arg
 res ← R arg ; any numeric array
 ; This function works along the first dimension if the rank of arg ≥ 2.
 ; In the example below, the first element of rarg in descending order is in
 ; the first position, and the second element in descending order is third.
 U 9 3 7 1 5
1 3 5 2 4

b Character Grade Up ¦ dyadic U ◊ Return the ascending sort order of rarg
 according to the scheme defined by larg
 res ← larg U rarg ; rarg, larg any character arrays
 x ← 'A quick brown fox jumps over the lazy dog.'
 x[▭AVUx]
 .Aabcdeefghijklmnoooopqrrstuuvwxyz

 Note that the spaces are characters and they come at the beginning of res.
 You can specify any set of characters in the left argument. Typically you
 might choose a collating sequence such as larg←'AaBbCc' etc., or
 larg←'abc. . .','ABC . . .' If characters appear in rarg that do not appear
 in larg, the system puts them at the end of the sequence in their rarg order.

b Without ¦ dyadic H ◊ Select the elements of larg that are not in rarg
 res ← larg H rarg ; larg, any scalar or vector; rarg, any array
 'beekeeper'H'e' # 1 2 3 4 5 H 2 4 # 'paragon'H'paragon'H'aeiou'
bkpr #1 3 5 # aao
→

 APL Special Edition Documentation

Chapter 6. Function Reference -- General Functions and Operators

The functions described in this chapter do not fall in the category of either
arithmetic or structural functions. Many of them allow you to compare or test
data; with the results of the test, you can use structural and arithmetic
functions to advantage. There is also a category of APL symbols called
operators which allow you to modify the way functions work. In addition, some
uses of special symbols that are neither functions nor operators are described.

Examples are usually given with vector arguments; these functions generally
work with arrays of more dimensions. Examples also usually use numeric arrays.
You can experiment with character arrays to see the effects.

Examples are usually given with small arguments for simplicity and compactness.
Several examples may be strung across the page to save space, using the pound
sign <#: as a separator. APL would not literally provide the output as shown.

b Name ¦ symbol ◊ Description in words
 Syntax ; Restrictions on arguments, if any
 Explanation of the result <if necessary:
 Example <starting at six-space indent:
Result

res means result; arg means the argument to a monadic function; larg means left
argument and rarg means right argument to a dyadic function.

6.1 Boolean Functions

Boolean arrays consist of only two values, 0 and 1. You can think of these
values as representing the absence or presence of a characteristic, no/yes, or
false/true. A function that returns a Boolean array describes a relationship
between the data arrays that are its arguments. The arrays that are arguments
can be of other data types.

6.1.1 Functions that Return a Boolean Array

b Equal ¦ dyadic = ◊ Return 1 if larg equals rarg
 res ← larg = rarg ; larg, rarg any conforming arrays
 'I' = 'MANUGISTICS' # 1 2 3 = 2 1 3
0 0 0 0 0 1 0 0 1 0 0 #0 0 1

b Not equal ¦ dyadic ≠ ◊ Return 1 if larg does not equal rarg
 res ← larg ≠ rarg ; larg, rarg any conforming arrays
 'statistics' ≠ 'satisfying' # 1 2 3 ≠ 2 1 3
0 1 1 1 1 1 1 0 1 1 #1 1 0

b Greater than ¦ dyadic > ◊ Return 1 if larg is greater than rarg
 res ← larg > rarg ; larg, rarg conforming numeric arrays
 1 2 3 > 2 1 3
0 1 0

b Greater than or equal ¦ dyadic ≥ ◊ Return 1 if larg ≥ rarg
 res ← larg ≥ rarg ; larg, rarg, conforming numeric arrays
 1 2 3 ≥ 2 1 3
0 1 1

b Less than ¦ dyadic < ◊ Return 1 if larg is less than rarg
 res ← larg < rarg ; larg, rarg conforming numeric arrays
 1 2 3 < 2 1 3
1 0 0

b Less than or equal ¦ dyadic ≤ ◊ Return 1 if larg less than or equal to rarg

 res ← larg ≤ rarg ; larg, rarg, conforming numeric arrays
 1 2 3 ≤ 2 1 3
1 0 1

b Match ¦ dyadic ≡ ◊ Return 1 if larg and rarg have the same rank,
 shape and values
 res ← larg ≡ rarg ; larg, rarg any arrays
 1 2 3 ≡ 2 1 3 # 'xyzzy' ≡ 1 5 o 'xyzzy' # 'xyzzy'≡'xyzzy'
0 #0 #1

b Member of ¦ dyadic m ◊ Return 1 if rarg contains an element of larg
 res ← larg m rarg ; larg, rarg any arrays
 ; res has the shape of larg; the system looks for single elements of larg
 'abc' m 'banana'
1 1 0

b Find ¦ dyadic n ◊ Return 1 where larg starts if rarg contains larg
 res ← larg n rarg ; larg, rarg any arrays
 ; res has the shape of rarg; the system looks for the entire array larg
 'ana' n 'banana'
0 1 0 1 0 0

6.1.2 Logical Functions

A Logical function uses only Boolean arrays as arguments and also return a
Boolean array as its result. You can also use Boolean arrays as arguments to
non-Boolean functions. The results may not be Boolean. For example, you can
sum a Boolean vector to find the number of occurrences.

b AND ¦ dyadic ∧ ◊ Return 1 if both larg and rarg are 1
 res ← larg ∧ rarg ; larg, rarg any conforming Boolean arrays
 0 0 1 1 ∧ 0 1 0 1
0 0 0 1

b OR ¦ dyadic ∨ ◊ Return 1 if either or both larg and rarg are 1
 res ← larg ∨ rarg ; larg, rarg any conforming Boolean arrays
 0 0 1 1 ∨ 0 1 0 1
0 1 1 1

b NAND ¦ dyadic f ◊ Return 0 if both larg and rarg are 1
 res ← larg f rarg ; larg, rarg any conforming Boolean arrays
 0 0 1 1 f 0 1 0 1
1 1 1 0

b NOR ¦ dyadic e ◊ Return 1 if neither larg nor rarg is 1
 res ← larg e rarg ; larg, rarg any conforming Boolean arrays
 0 0 1 1 e 0 1 0 1
1 0 0 0

b NOT ¦ monadic H ◊ Return 1 if arg is 0; return 0 if arg is 1
 res ← H arg ; arg, any Boolean array
 H 0 1 0 1
1 0 1 0

6.2 Execute and Format Functions

b Execute ¦ monadic � ◊ Execute an APL statement that is stored as a
 character vector
 res ← � arg ; arg, any character vector
 stv←'<<I1*2:+I2*2:*.5'
 I1←3
 I2←4
 � stv
5
 <<I1*2:+I2*2:*.5
5

Note: You can use Execute to turn numerals <character representation of
numbers: into numeric data, but it is preferable to use the system function ▭FI.

b Format ¦ monadic � ◊ Represent numeric data in character form
 res ← � arg ; arg, any array, but characters are unchanged
 � 2 3 o r 6 # 'ab' ≡ �'ab'
 1 2 3 #1
 4 5 6
 ' 'n � 2 3 o r 6
1 0 1 0 1 0
1 0 1 0 1 0

b Pattern format ¦ dyadic � ◊ Represent numeric data in character form,
 formatting the result according to larg
 res ← larg � rarg ; rarg, any numeric array; larg, integer
 ; scalar, pair, or vector of integer pairs. The first integer of a pair
 ; specifies the column width; 0 requests a field large enough to hold the
 ; largest number. The second integer specifies the number of decimal places.
 ; If the second number is negative, the system uses exponential notation.
 ; If there is only one number, it defines the number of decimal places.
 1 0 4 1 6 2 � 2 3 o r 6 # 1 � 2 3 5 # 1 0 � 2 3 5
1 2.0 3.00 #2.0 3.0 5.0 #235
4 5.0 6.00

6.3 Operators

Operators are a special group of APL symbols that modify functions. An operator
takes a function <or two functions: as an operand, and the result is a derived
function that acts on one or two arrays. Operators greatly expand the power of
APL and allow complex manipulation of data with very concise expressions.

b Reduction ¦ one function <f: operand preceding / or �
 res ← f � arg ◊ res ← f / arg ◊ res ← f �[i] arg ◊ res ← f /[i] arg
 ; Apply the function across an array, eliminating the dimension specified
 ; by i in the process. The default dimension for � is the first dimension;
 ; the default dimension for / is the last. arg, any array valid for f.
 +/ r6
21
 ×�2 3 o r 6
4 10 18

 Note that the right to left execution of APL applies to this operation. If
 you have a statement like ÷/1 5 9, it is the same as writing 1 ÷ 5 ÷ 9.
 When APL executes this statement it divides 5 by 9 and then divides 1 by
 the intermediate result. You could express it as: res ← 1 ÷ <5 ÷ 9:

b Scan ¦ one function operand preceding \ or �
 res ← f � arg ◊ res ← f \ arg ◊ res ← f �[i] arg ◊ res ← f \[i] arg
 ; Apply successive reductions to the array along the specified dimension.
 ; The default dimension for � is the first dimension; the default for \
 ; is the last. arg, any array valid for the function f.
 +\ r6
1 3 6 10 15 21
 ×� 3 2 o r6
 1 2
 3 8
 15 48

 Note that successive values incorporate more elements of the array from left
 to right, but the system calculates each value using right-to-left evaluation.
 Thus, the three successive values of ÷\1 5 9 are 1, 1÷5, and 1 ÷ <5÷9:.
 ÷\1 5 9
1 0.2 1.8

b Outer product ¦ one function <g: following �. ◊ applies to two arrays
 ; Note that this compound symbol is jot-dot, made by Alt+J and the period.
 res ← larg �.g rarg
 ; Apply the function between every possible pairing of items from larg and
 ; rarg. larg, rarg, any arrays valid for g.
 2 3 5 �.* 0 1 2 3
 1 2 4 8
 1 3 9 27
 1 5 25 125

b Inner product ¦ two functions separated by . ◊ applies to two arrays
 res ← larg f.g rarg
 ; Generalized matrix multiplication. larg, rarg, arrays valid for f and g
 ; where the last dimension of larg is equal to the first dimension of rarg.
 ; This function applies the second function <g: between elements of the last
 ; dimension of larg and corresponding elements of the first dimension of
 ; rarg, followed by applying reduction using the first function <f:.
 3 5 7 ×.- 1 2 3
24 ; This value is 2×3×4

 <2 3 o r 6: +.× 3 4 o r 12 ; Matrix multiplication
 38 44 50 56
 83 98 113 128

6.4 Other Symbols Used by APL

APL uses the symbols below for purposes other than functions or operators.
These brief explanations provide the Symbol, Name, Use, Comments, and Example.

b ¯ High Minus ¦ used to denote negative numbers
 ; ¯2 is the result of 0 - 2

b ' Single quote ¦ used to delimit character strings
 ; The variable 'abc' is a three-element character vector; so is '123'
 ; If you want to include an apostrophe in a character string, double it.
 'Joe''s'
Joe's

b z Zilde <combination of zero and tilde: ¦ the empty <numeric: vector
 ; This is a placeholder that is not the same as zero. It has shape 0.
 z ≡ r0
1
 Note: You can define an empty character vector with ''.

b ← Left arrow ¦ assignment of values to a variable
 vec ← 3 + r 6
 vec
4 5 6 7 8 9

b [] Brackets ¦ indexing and indexed assignment
 vec[3]
6
 vec[5 6]←1 2
 vec
4 5 6 7 1 2

b ; Semicolon ¦ used to separate dimensions of a matrix in indexing
 mat← 2 3o r 6
 mat[2;1] ; This is row 2, column 1
4
 mat[1;1 3]←8 9

 mat
 8 2 9
 4 5 6

b � Del ¦ Function designator
 ; If you type � in the session, you begin editing a new function.
 ; If you type a second del on a later line, you end the editing session.

b ◊ Diamond ¦ Statement separator
 ; Useful mainly in user-written functions to put more than one small
 ; statement on a given line. The system executes statements from left
 ; to right; each statement is evaluated from right to left.
 I← 5 ◊ J← 3 ◊ I-J
2

b ; Lamp ¦ Comment designator
 ; Everything to the right of the lamp is not evaluated by the system
 ; Useful mainly in user-written functions for internal documentation

b → Right arrow ¦ Branch within a function
 ; Used in user-written functions to change the flow of the function.
 ; Typically, you branch to a label. Branch to zero exits the function.
 ; The branch statement would look like this: [n] → here

b : Colon ¦ Appended to a name to designate a label in a function
 ; You place the label at the point to which you want to branch.
 ; The branch arrow sends the program to that point.
 ; The label statement would look like this: [23] here:

b ▭ Quad ¦ Allow a user-written function to request <usually: numeric input.
 ; The input must be a statement that APL can evaluate. You can also use
 ; quad to display the contents of a variable or an expression.

b w Quote-quad ¦ Allow a user-written function to request character input.
 ; The system treats any input from the keyboard as characters.
 ; Example of a function using the above.

 � myfn;aort;num;z
[1] 'How many random numbers <up to 99: do you want?'
[2] num←▭ ⌊ 99 ◊ z←?numo100 ; Comment: Two statements on the same line.
[3] z ; This statement causes the random numbers to display.
[4] 'Do you want to add <Enter add: or multiply <Enter times:?'
[5] aort←3↑w ; Make aort length three so the tests don't cause an error.
[6] →<aort='add':/plus ; Branch
[7] →<aort='tim':/product
[8] →neither ; If the function gets to here, the user erred.
[9] plus:
[10] +/z ; Do a plus reduction.
[11] →0
[12] product: ; This label is the target of the second branch.
[13] ×/z ; Do a times reduction.
[14] →0
[15] neither:
[16] 'You did not respond with a valid answer.'
 �

Note: You can find myfn in the INITIAL workspace.

 J J J WARNING: USE THIS NEXT SYMBOL WITH CAUTION J J J
b O Del-tilde ¦ Lock a function
 ; This allows you to have a function that neither you nor anybody else
 ; can subsequently alter. Before you do this, make a copy of the
 ; function you are about to lock so you do not have to recreate your
 ; work from scratch.

b <: Parentheses ¦ used to group items in an expression
 ; The system evaluates the expression within parentheses before
 ; continuing with the normal right-to-left progression. You can nest
 ; parentheses beyond the level you could understand the nesting.
 <9-<8-<7-<6-<5-<4-<3-<2-1:::::::: ; Same as normal evaluation
5
 9-8-7-6-5-4-3-2-1
5
 <<<<<<<9-8:-7:-6:-5:-4:-3:-2:-1
¯27

b � � _ ¦ Delta, Delta-underscore, and Underscore
 ; You can use these three symbols in the names of APL variables and
 ; functions. An underscore may not be the first character.
 �var← 5
 vec�← 1 2 3
 mat_2 ← 3 3 o r 9
 mat_2 I vec� × �var
 1 2 3
 4 5 6
 7 8 9
 5 10 15
→

