WP 34S

pocket reference

Firmware V3．2

A $\quad \alpha$	B β C	C ${ }^{\prime}$	D \triangle	δ	$\begin{aligned} & \Rightarrow \\ & \mathrm{E} \\ & \hline \end{aligned}$	，	CPX MODE F Ф φ
$\begin{array}{\|ll\|} \hline \alpha \mathrm{STO} \\ \mathrm{G} & \Gamma \gamma \\ \hline \end{array}$		$R \uparrow$	f		G		h
		$\mathrm{J} \stackrel{(}{\rightleftarrows}$	$\mathrm{K}^{ \pm} \begin{aligned} & \text { ¢ } \\ & \end{aligned}$		$\mathrm{L} \stackrel{\pi}{\wedge}$		$\stackrel{\leftrightarrow}{\mathrm{CL} \alpha}$
	$M^{8}{ }^{7}$	N ${ }^{8}$	8 l		$\begin{aligned} & 9 \\ & \neq \\ & \Omega \omega \end{aligned}$		$\}_{\Pi \pi}$
！	Q	5 R	$\begin{aligned} & \hline 5 \\ & \mathrm{Pp} \\ & \hline \end{aligned}$		6 $\Sigma \sigma$	T	\times τ
？	1 TEST 0θ	U^{2}	2		$\begin{aligned} & 3 \\ & \hline \text { FCN } \end{aligned}$	W	
EXIT OFF介	$\begin{aligned} & 0 \\ & \Psi \psi \end{aligned}$		$\stackrel{\%}{\bar{\prime}}$	R／	$\begin{array}{r} \text { R/S } \\ \quad u \\ \hline \end{array}$	Z	$+$ そ

CPX accented characters
R个 $\quad 0^{\circ} 12^{23} A B c^{c}$ dekmnpquwX $X^{\mathrm{X}} \mu^{-1^{*}} \infty$
TEST $<\leq=\approx \geq>[]\{ \}$

Andrew Nikitin

2014－04－14
 $\begin{array}{ll} & \text { distributions parameters } \\ \text { text volatile }\end{array}$
 related to stack operations
flags with special meaning

DBLOFF

This document briefly describes commands of WP 34s programmable calculator with firmware version 3.2. Please refer to WP 34S Owner's Manual for the definitive guide.

Command catalogs

MATRIX

DET	M+x	M-ROW	M.REG
LINEQS	M^{-1}	Mx	nCOL
MROW $+x$	M-ALL	M.COPY	nROW
MROW x	M-COL	M.IJ	TRANSP
MROW \rightleftarrows	M-DIAG	M.LU	

MODE

12h	D.MY	PowerF	SETTIM
1COMPL	E3OFF	RCLM	SETUK
24h	E3ON	RDX,	SETUSA
2COMPL	ExpF	RDX.	SIGNMT
BASE	FAST	REGS	SLOW
BestF	FRACT	RM	SSIZE4
DBLOFF	JG1582	SEPOFF	SSIZE8
DBLON	JG1752	SEPON	STOM
DENANY	LinF	SETCHN	UNSIGN
DENFAC	LogF	SETDAT	WSIZE
DENFIX	LZOFF	SETEUR	Y.MD
DENMAX	LZON	SETIND	具DLAY
DISP	M.DY	SETJPN	胃MODE

PROB

Binom	Expon	Geom	Norml
Binom $_{P}$	\ldots	\ldots	\ldots
Binom $_{u}$	$\mathrm{~F}_{\mathrm{P}}(x)$	Lgnrm	Poiss
Binom $^{-1}$	$\mathrm{~F}_{\mathrm{u}}(x)$	\ldots	\ldots
Cauch	$\mathrm{F}(x)$	Logis	Pois λ
\ldots	$\mathrm{F}^{-1}(\mathrm{p})$	\ldots.	\ldots

$\mathrm{t}_{\mathrm{p}}(\mathrm{x})$	$\mathrm{t}^{-1}(\mathrm{p})$	$\Phi_{u}(\mathrm{x})$	χ^{2} INV
$\mathrm{t}_{\mathrm{u}}(\mathrm{x})$	Weibl	$\varphi(\mathrm{x})$	$\chi^{2}{ }^{\text {p }}$
t（x）	．．．	χ^{2}	$\chi^{2} u^{\prime}$
P．FCN			
BACK	gFLP	REGS？	$y \rightleftarrows$
BASE？	gPLOT	RESET	$\mathrm{z} \rightleftarrows$
CASE	gSET	RM？	aGTO
CFALL	GTO α	RTN＋1	aOFF
CLALL	INC	R－CLR	aON
CLPALL	ISE	R－COPY	aXEQ
CLREGS	ISZ	R－SORT	\rightleftarrows
CLSTK	LOADP	R－SWAP	昌ADV
CLa	LOADR	SAVE	昷CHR
CNST	LOADSS	SENDA	
DEC	LOADS	SENDP	夏PLOT
DROP	LocR	SENDR	昷PROG
DSL	LocR？	SENDE	且r
DSZ	MEM？	SKIP	昷REGS
END	MSG	SMODE？	目STK
ERR	NOP	SSIZE？	县TAB
FF	PopLR	STOS	－WIDTH
FLASH？	PRCL	TICKS	是 ${ }^{\text {a }}$
$\mathrm{f}^{\prime}(\mathrm{x}$ ）	PROMPT	$t \rightleftarrows$	昷 $\alpha+$
f＇（x）	PSTO	VIEWa	县
gCLR	PUTK	VWa＋	昷＋${ }^{\text {a }}$
gDIM	RCLS	WSIZE？	昌\＃
gDIM？	RECV	XEQa	
STAT			
COV	SUM	\hat{x}	$\sigma_{\text {w }}$
L．R．	$S_{\text {w }}$	ε	\％
SEED	$s_{\text {XY }}$	$\varepsilon_{\text {m }}$	
SERR	xg_{g}	$\varepsilon_{\text {p }}$	
SERRW	${ }_{\text {w }}$	σ	

$\mathrm{n} \Sigma$	$\Sigma \ln x y$	$\sum x^{2} y$	Σy^{2}
$\Sigma \ln ^{2} \mathrm{x}$	Elny	Exlny	Sylnx
$\Sigma \ln ^{2} \mathrm{y}$	$\Sigma \mathrm{x}$	$\Sigma x y$	
$\Sigma \operatorname{lnx}$	Σx^{2}	Σy	
TEST			
$B C$?	FP?	LEAP?	$x \leq$?
BS ?	FS?	M. SQR ?	$x=+0$?
CNVG?	FS?C	NaN ?	$x=-0$?
DBL?	FS?F	ODD?	$x \sim$?
ENTRY?	FS?S	PRIME ?	$x \geq$?
EVEN?	gPIX?	REALM?	$x>$?
FC?	INTM?	SPEC?	∞ ?
FC?C	INT?	TOP?	昌?
FC?F	KEY?	XTAL?	
FC?S	LBL?	$\mathrm{x}<$?	

X.FCN

${ }^{3} \mathrm{~V}$ x	DECOMP	H_{n}	LNß
AGM	DEG \rightarrow	$\mathrm{H}_{\text {np }}$	MANT
ANGLE	dRCL	H.MS+	MASKL
ASR	DROP	H.MS-	MASKR
B_{n}	$\mathrm{D} \rightarrow \mathrm{J}$	IDIV	MAX
$B^{*}{ }_{n}$	erf	iRCL	MIN
BATT	erfc	I β	MIRROR
CB	EXPT	$I \Gamma_{p}$	MOD
CEIL	$\mathrm{e}^{\mathrm{x}}-1$	$\underline{I} \Gamma_{q}$	MONTH
DATE	FB	$\mathrm{J} \rightarrow$ D	NAND
DATE \rightarrow	FIB	LCM	nBITS
DAY	FLOOR	LJ	NEIGHB
DAYS+	$\mathrm{g}_{\text {d }}$	L_{n}	NEXTP
DBL×	$\mathrm{gd}_{\mathrm{d}}{ }^{-1}$	LN1+x	NOR
DBL/	GCD	$\mathrm{L}_{n} \alpha$	P_{n}
DBLR	GRAD \rightarrow	LN「	RAD \rightarrow

RDP	SLVQ	${ }^{\times} \sqrt{y}$	「
RESET	SR	YEAR	$\gamma_{X Y}$
RJ	sRCL	aDATE	$\Gamma_{X Y}$
RL	STOPW	aDAY	\triangle DAYS
RLC	TIME	aIP	ζ
ROUND	T_{n}	aLENG	$(-1)^{x}$
ROUNDI	ULP	aMONTH	\rightarrow DATE
RR	U_{n}	aRC\＃	\％＋MG
RRC	VERS	aRCL	\％Σ
RSD	WDAY	$\alpha \mathrm{RL}$	\％MG
SB	WHO	aRR	\％MRR
SDL	W_{m}	aSL	\％T
SDR	W_{p}	$\alpha S R$	\times MOD
SEED	W^{-1}	aSTO	\wedge MOD
SIGN	XNOR	人TIME	
SINC	x^{3}	$\alpha \rightarrow X$	
SL	$x \rightarrow 0$	β	

CPX X．FCN

${ }^{c 3} \sqrt{ } \mathrm{x}$	${ }^{\text {c }}$ RROP
${ }^{\text {c }}$ AGM	${ }^{\text {c }} \mathrm{c}^{\mathrm{x}}$－1
${ }^{\text {c CNST }}$	${ }^{\text {c }}$ ¢ ${ }^{\text {a }}$（
${ }^{\text {c }} \mathrm{CONJ}$	${ }^{\mathrm{c}} \mathrm{g}$ d
${ }^{\text {c CROSS }}$	${ }^{C} \mathrm{ga}^{-1}$
${ }^{\text {c }}$ DOT	${ }^{\text {c I I IV }}$

${ }^{\text {c }}$ LN1＋x	${ }^{\text {c }} \mathrm{W}^{-1}$
${ }^{\text {c }}$ LNß	${ }^{c} x^{3}$
${ }^{\text {c }}$ LN「	${ }^{c \times} \sqrt{ } \mathrm{y}$
${ }^{\text {c SIGN }}$	${ }^{\circ} \beta$
${ }^{\text {c SINC }}$	${ }^{\text {c }}$
${ }^{\text {c }} \mathrm{W}_{\mathrm{p}}$	${ }^{\text {c }}(-1)^{x}$

WP 34S commands

The entry header contains the following information:

1) name of the command
2) effect on the stack
3) clues on how to enter the command
10x $\quad \mathbf{x} \rightarrow \mathbf{r} \quad$ (CPX ©

Common antilogarithm, See also LOG $_{10}$
12h
\rightarrow -
MODE
12h time display mode. This will make a difference in α TIME only.

1COMPL

$-\rightarrow-$
MODE
Set 1's complement mode for integers.
1/x
$x \rightarrow r$
(CPX) f
(CPX) (B

Inverse of a number.
24h

- \rightarrow -

MODE
24 h time display mode. Compare 12 h .
2COMPL
$-\rightarrow$ -
MODE
Set 2's complement mode for integers.
2^{x}
$\mathrm{x} \rightarrow \mathrm{r}$
(CPX) $(f$
See also LOG $_{2}$
$3^{3} \mathrm{x}$
$x \rightarrow r$
(CPX X.FCN
Cubic root.
ABS
$x \rightarrow r$
(CPX (f)
Absolute value.

ACOS

$$
x \rightarrow \theta
$$

Principal value of $\arccos (x)$.
ACOSH

$$
\operatorname{csch}^{-1} x=\stackrel{\mathbf{x} \rightarrow \mathbf{r}}{\ln \left(x+\sqrt{x^{2}-1}\right)}
$$

AGM
$\mathbf{y x} \boldsymbol{x} \quad$ CPX X.FCN

Arithmetic-geometric mean.
Starts with $\mathrm{a}_{0}=\mathrm{a}, \mathrm{b}_{0}=\mathrm{b}$ and iterates

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right) ; b_{n+1}=\sqrt{a_{n} b_{n}}
$$

AGM can be expressed in terms of complete elliptic integral of first kind $\mathrm{K}(\mathrm{k})$

$$
\operatorname{agm}(a, b)=\frac{(a+b) \pi}{4 K\left(\frac{a-b}{a+b}\right)}
$$

ALL n

 $-\rightarrow$ -Numeric display format that shows all decimals whenever possible.
$x \geq 10^{13}$ is displayed in SCI or ENG with the maximum number of digits necessary (see SCIOVR and ENGOVR). The same happens if $\mathrm{x}<10^{-\mathrm{n}}$ and more than 12 digits are required to show x completely.

AND
$y x \rightarrow r$
INT: bitwise AND.
DECM: logical AND; x and y meaning is 'false', when zero and 'true' when any other real number.

ANGLE

 $\mathrm{yx} \rightarrow \boldsymbol{\theta}$X.FCN
$\arctan (y / x)$ corrected for quadrant and singularities.

ASIN

$$
x \rightarrow \theta
$$

Principal value of $\arcsin (\mathrm{x})$
ASINH
$\mathbf{x} \rightarrow \mathbf{r}$
(cPx) $\mathrm{HYP} \mathrm{HP}^{-1}$

$$
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

ASR n
$\mathrm{m} \rightarrow \mathrm{r}$
X.FCN

Right shift with sign propagation, $\mathrm{n} \leq 63$. Corresponds to a division by 2.

ATAN

$$
\begin{equation*}
x \rightarrow \theta \tag{cpx}
\end{equation*}
$$

Principal value of $\arctan (x)$.
ATANH

$$
\begin{aligned}
& \mathbf{x} \rightarrow \mathbf{r} \\
& \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

BACK n

- \rightarrow -
P.FCN

Jump n steps backwards ($0 \leq \mathrm{n} \leq 255$).
BACK 1 goes to the previous program step. If BACK attempts to cross an END, an error is thrown. Reaching step 000 stops program execution. Compare SKIP.

BASE n	- \rightarrow -	MODE
BASE 10		f 10
BASE 16		(g) 16
BASE 2		f(2)
BASE 8		(9) 8

Set integer mode with base $2 \leq n \leq 16$. Popular bases are directly accessible on the keyboard. BASE 0 sets DECM, BASE 1 calls FRACT. See there.
ATTENTION: this command converts stack contents with possible truncation or loss of
precision. Other registers stay as they are. BASE 10 is not DECM.

BASE ?

$-\rightarrow r$
P.FCN

INT: current integer base
DECM: integer base set before DECM
BATT $\quad \rightarrow$ volts X.FCN

DECM: Battery voltage in the range $1.9 . . .3 .4 \mathrm{~V}$.
INT: Battery voltage in units of 100 mV .
BC? n
$\mathbf{m} \rightarrow \mathbf{m}$
TEST
Test if n-th bit in X is 0 .
BestF
$-\rightarrow$ -
MODE
Select the best curve fit model, maximizing the correlation..

Binom	$x \rightarrow p$
Binom $_{p}$	$x \rightarrow r$
Binom $_{u}$	$x \rightarrow p$
Binom $^{-1}$	$p \rightarrow x$

PROB

Binomial distribution, the probability of a success p_{0} in J and the sample size n in K.
B_{n}

$$
n \rightarrow r
$$

X.FCN
B_{n} *
B_{n} returns the Bernoulli number for an integer $n>0$ given in X. $B_{n} *$ works with the old definition instead.

$$
\begin{gathered}
B_{n}=(-1)^{n+1} n \cdot \zeta(1-n) \\
B_{n}^{*}=\frac{2 \cdot(2 n)!}{(2 \pi)^{2 n}} \zeta(2 n)
\end{gathered}
$$

BS? n
$\mathrm{m} \rightarrow \mathrm{m}$
Test if n-th bit in X is set.

CASE s

- \rightarrow -

Like SKIP, but takes the number of steps to skip from s.

CAT

- \rightarrow -

Alpha labels browser.
(0), 1, or 2 - quick jump to RAM, LIB or BUP
($)$, - browse alpha labels
$f(\mathbb{A}, \mathrm{f}$ - browse programs (separated by END statements)
ENTERT - go to alpha label with search XEQ - execute alpha label with search; programming mode: insert XEQ'lbl'
GTO - programming mode: insert GTO' lbl '
R/S - execute alpha label without search
RCL, STO - PRCL, PSTO
f(CLP - delete program in RAM or LIB
Cauch

$$
\mathbf{x} \rightarrow \mathbf{p}
$$

PROB
Cauchp $_{\text {p }}$ $x \rightarrow r$
Cauch_{u}
$\mathbf{x} \rightarrow \mathbf{p}$
Cauch ${ }^{-1}$
$p \rightarrow x$
Cauchy-Lorentz distribution (also known as Lorentz or Breit-Wigner distribution) with the location x_{0} in J, the shape γ in K .

CB n
$m \rightarrow r$
X.FCN

Clear n-th bit in X .
CEIL
$x \rightarrow r$
X.FCN

Smallest integer $\geq \mathrm{x}$
CF n
Clear flag n.

Clear all user flags
CLALL
$-\rightarrow$ -
P.FCN

Clear all registers, flags, and programs in RAM if confirmed. Not programmable. Compare RESET.

CLP
$-\rightarrow$ -
Clear the current program, i.e. the one the program pointer is in. Not programmable.

CLPALL
$-\rightarrow$ -
P.FCN

Clear all programs in RAM if confirmed. Not programmable.

CLREGS $-\rightarrow$ -
P.FCN

Clear all global and local general purpose registers (see REGS and LOCR), keep the contents of the stack, L, and I.

CLSTK

... \rightarrow...
P.FCN

Clear all stack registers currently allocated (i.e. X through T or X through D, respectively), keep all other registers.

CLx

$$
\begin{equation*}
x \rightarrow 0 \tag{h}
\end{equation*}
$$

Clear register X , disable stack lift.
CL α
$-\rightarrow$ -
P.FCN

Input: h CLx
Clear the alpha register.
CLE $-\rightarrow$ -
Release the memory allocated for the summation registers.

Indirect addressing of the content at position n in CONST catalog.

CNVG? n

$-\rightarrow$ -
TEST
Check for convergence by comparing x and y as determined by the lowest five bits of $n=a+4 b+16 c$
a - lowest two bits, tolerance limit:
$0=10^{-14}$,
$1=10^{-24}$,
$2=10^{-32}$,
3 = choose the best for the mode set: 0 for
single precision and 2 for double precision.
b - the next two bits, determines the comparison mode using the tolerance limit set:
$0=$ compare the real numbers x and y relatively,
1 = compare them absolutely,
$2=$ check the absolute difference between the complex values $\mathrm{x}+\mathrm{i} \cdot \mathrm{y}$ and $\mathrm{z}+\mathrm{i} \cdot \mathrm{t}$,
$3=$ works as 0 so far.
c - the top bit, tells how special numbers are handled:
$0=\mathrm{NaN}$ and infinities are considered converged,
1 = they are not considered converged.
COMB

$$
y x \rightarrow r
$$

CPX (f)
The number of possible sets of y items taken x at a time. $\mathrm{C}_{y, x}=\frac{y!}{x!(y-x)!}$. Compare PERM.

Flip the sign of y, the complex conjugate of x_{c}.

CONST

$-\rightarrow r$
h
Catalog of physical and mathematical constants.
$1 / 2=0.5$
a [d] Gregorian year
aө [m] Bohr radius
$a_{m} \quad$ [m$]$ semi-major axis of the Moon's orbit
$a_{\oplus} \quad[m]$ semi-major axis of the Earth's orbit=1 AU
c $[\mathrm{m} / \mathrm{s}]$ speed of light in vacuum
$c_{1} \quad\left[\mathrm{~m}^{2} \mathrm{~W}\right]$ first radiation constant
$c_{2} \quad[\mathrm{~m} \cdot \mathrm{~K}]$ second radiation constant
e [C] electron charge
eE Euler's e
F [C/mol] Faraday's constant
Fa Feigenbaum α
F $\delta \quad .$. and δ
g $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ standard earth acceleration due to gravity
G $\quad\left[\mathrm{m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)\right]$ Newton's gravitation constant
$G_{\rho} \quad[1 / \Omega]$ conductance quantum
Gc Catalan's constant
ge Landé's electron g-factor
GM $\left[\mathrm{m}^{3} / \mathrm{s}^{2}\right]$ gravitation constant times earth mass, WGS84
h [J•s] Planck constant
$\hbar \quad[\mathrm{J} \cdot \mathrm{s}] \mathrm{h} / 2 \pi$
k $[\mathrm{J} / \mathrm{K}]$ Boltzmann constant
$K_{J}[\mathrm{~Hz} / \mathrm{V}]$ Josephson constant
$l_{p} \quad[\mathrm{~m}]$ Planck length
$m_{e} \quad[\mathrm{~kg}]$ electron mass
$M_{m} \quad[\mathrm{~kg}]$ mass of the Moon
$m_{n} \quad[\mathrm{~kg}]$ neutron mass
$m_{p} \quad[\mathrm{~kg}]$ proton mass
$M_{p} \quad[\mathrm{~kg}]$ Planck mass
$m_{u} \quad[\mathrm{~kg}]$ atomic mass unit
$m_{u} c^{2}[J]$ energy equival ent of atomic mass unit
$m_{\mu} \quad[\mathrm{kg}]$ muon mass
$M_{\odot} \quad[\mathrm{kg}]$ mass of the Sun
$M_{\oplus} \quad[\mathrm{kg}]$ mass of the Earth
$N_{A} \quad[1 / \mathrm{mol}]$ Avogadro number
NaN
po [Pa] standard atmospheric pressure
$q_{\mathrm{p}} \quad[\mathrm{A} \cdot \mathrm{s}]$ Planck charge
R $\quad[\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})]$ molar gas constant
$r_{e} \quad[\mathrm{~m}]$ classical electron radius
$R_{k} \quad[\Omega]$ von Klitzing const.
$\mathrm{R}_{\infty} \quad[1 / m]$ Rydberg const.
$\mathrm{R}_{\mathrm{m}} \quad[\mathrm{m}]$ mean radius of the Moon
$\mathrm{R}_{\odot}[\mathrm{m}] \ldots$ of the Sun
$R \oplus$ [m]... of the Earth
Sa [m] semi major axis of WGS84
Sb [m] semi minor axis of

	WGS84	λ_{c}	$[\mathrm{~m}]$ Compton wave-
Se^{2}	first eccentricity		lengths of the electron

CONV

$$
x \rightarrow r
$$

Catalog of unit conversions.

CORR

$$
-\rightarrow r
$$

Correlation coefficient for the current statistical data and curve fitting model. For linear model

$$
r=\frac{s_{X Y}}{s_{X} s_{Y}}
$$

For arbitrary model $\mathrm{R}(\mathrm{x})$, the value

$$
r^{2}=1-\frac{\sum\left[\mathrm{R}\left(x_{i}\right)-y_{i}\right]^{2}}{\sum\left(\bar{y}-y_{i}\right)^{2}}
$$

is coefficient of determination. $\mathrm{r}^{2}=0.93$ means that 93% of total variation of y is due to x.

Cosine.
COSH

$$
x \rightarrow r
$$

CPP HYP
Hyperbolic cosine, $\cosh x=\frac{e^{x}+e^{-x}}{2}$
COV $-\rightarrow \mathbf{r}$
Population covariance of two data sets. It depends on the fit model. See $s_{X y}$ for the sample covariance. For linear model

$$
\operatorname{COV}_{X Y}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n^{2}}
$$

${ }^{\text {c CROSS }}$
$\mathbf{t z y x} \mathbf{y} \quad$ CPX X.FCN
Interpret x and y as Cartesian components of a first vector, and z and t as those of a second one, and return $\mathrm{X}=\mathrm{r}=\mathrm{x} \cdot \mathrm{t}-\mathrm{y} \cdot \mathrm{z}, \mathrm{Y}=0$, dropping two stack levels.

DATE $-\rightarrow \mathrm{dc}$
X.FCN

Date from the real time clock. Actual presentation depends on date format. See D.MY, M. DY, and Y.MD. DATE shows the day of week in the dot matrix.

DATE $\rightarrow \quad \mathrm{dc} \rightarrow \mathrm{ym}$ d X.FCN
Parse the date according to current date format and calculate $\mathrm{Z}=$ year, $\mathrm{Y}=$ month, $\mathrm{X}=$ day.

DAY

$$
\mathrm{dc} \rightarrow \mathrm{r}
$$

X.FCN

Extract the day number from the date code.
DAYS+ dc $\mathbf{x} \rightarrow$ dc1 X.FCN
Add x days to a date in Y, display the resulting date including the day of week in the same
format as WDAY does.

DBLOFF DBLON

$-\rightarrow$ -
MODE

Toggle double precision mode. Setting becomes effective in DECM only and is indicated by D in the dot matrix.

DBL?
$-\rightarrow$ -
TEST
Test if double precision mode is turned on.

DBLR	lo $h i m \rightarrow r$	X.FCN
DBL/	lo $h i m \rightarrow r$	X.FCN
DBLx	y $x \rightarrow$ lo hi	X.FCN

Double word length commands for integer remainder, multiplication and division. DBLR and DBL/ accept a double size dividend in Y and Z (most significant bits in Y), the divisor in X as usual, and return the result in X . DBL× takes x and y as factors as usual but returns their product in X and Y (most significant bits in X)..

DEC s

P.FCN

Decrement s by 1 .

DECM

 - \rightarrow -f(H.d
Set decimal floating point mode.
DECOMP $\quad x \rightarrow$ num den $\quad X . F C N$

Decompose x (after converting it into an improper fraction, if applicable), into numerator (in Y) and denominator (in X). Reversible by division.

Set angular mode to degrees.
DEG \rightarrow
$x \rightarrow \boldsymbol{\theta}$
X.FCN

Convert x degrees to current angular units.
DENANY
\rightarrow -
MODE
Set fraction display subformat, which allows any denominator up to the value set by DENMAX may appear.
Example: If DENMAX $=5$ then DENANY allows denominators $1,2,3,4$, and 5 .

DENFAC

- \rightarrow -

MODE
Set fraction display subformat, which allows integer factors of the DENMAX as denominators.
Example: If DENMAX $=60$ then DENFAC will allow denominators $1,2,3,4,5,6,10,12,15$, 20,30 , and 60.

DENFIX

$\rightarrow-$
MODE
Set fraction display subformat where the only denominator allowed is DENMAX.

DENMAX

$$
x \rightarrow x
$$

MODE

$$
1 \rightarrow r
$$

Set the maximum allowed denominator in fraction display mode. Valid $2 \leq x \leq 9999$. For $\mathrm{x}=1$, recall current setting.

DET
mat $\rightarrow \mathbf{r}$
MATRIX
Determinant of a square matrix. Matrix descriptor is in X . The matrix is not modified.

Change the number of decimals shown while keeping the basic display format (FIX, SCI, ENG) as is. In ALL, DISP changes the switchover point (see ALL).
${ }^{\text {cDOT }} \quad \mathrm{tzyx} \rightarrow \mathbf{0 r} \quad \mathrm{CPX}$ X.FCN
X and Y are Cartesian components of a first vector, Z and T of a second one. Return $r=x \cdot z+y \cdot t$ in $X, 0$ in Y.
dRCL s
$-\rightarrow r$
P.FCN

Interpret s as double precision and recall it.
DROP $\quad \mathbf{x} \rightarrow-\quad$ (CPX X.FCN

Drop X.
DSE s
$-\rightarrow$ -
Given cccccc.fffii in s, DSE decrements s by ii,
 no fractional part then $f f f=0$ and $i i=1$.

DSL s
\rightarrow -
P.FCN

Like DSE but skips if $c c c c c c c<f f f$.
DSZ s
$-\rightarrow$ -
P.FCN

Decrement s by 1, and skip the next step if $|\mathrm{s}|<1$ thereafter.
D.MY
$-\rightarrow$ -
MODE
Set the dd.mmyyyy date format.
$\mathrm{D} \rightarrow \mathrm{J} \quad \mathrm{dc} \rightarrow \mathbf{r} \quad$ X.FCN
Julian day number of a date. To get julian day number for 0:00:00 of that date, subtract 0.5. See also JG...

E3ON

Toggle the thousands separators for DECM.
END $\rightarrow-$
P.FCN

Last command in a routine and a terminator for local labels search. Cannot be skipped by false test. Works like RTN in all other aspects.

ENG n
$-\rightarrow$ -
(h)

Engineer's display format. Exponent is always a multiple of 3 .

ENGOVR
$-\rightarrow$ -
h ENG ENTER
Use ENG mode to display numbers that cannot be displayed in ALL or FIX. Compare SCIOVR.

ENTER个

$$
x \rightarrow x x
$$

Push x on the stack, disable stack lift.

ENTRY?

\rightarrow -
TEST
Test the entry flag. This internal flag is set if:

* any character is entered in alpha mode, or
* any command is accepted for entry (be it via ENTERT, a function key, or R/S with a partial command line).
erf

$$
x \rightarrow r
$$

X.FCN
erfc
Error function and its complement.

$$
\begin{gathered}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
\operatorname{erfc}(x)=1-\operatorname{erf}(x)
\end{gathered}
$$

ERR n $-\rightarrow$ -
Raise the error n. The consequences are the
same as if error n really occurred, so e.g. a running program will be stopped. Compare MSG.
1 Domain error 14 Word size too small
2 Bad time or date 15 Too few data points

3 Undefined op-code 16 Invalid parameter
$4+\infty$ error
$5-\infty$ error
17 I/O error
6 No such label
18 Invalid data
7 Illegal operation
8 Out of range error
19 Write protected

9 Bad digit error
10 Too long error
11 RAM is full
20 No root found
21 Matrix mismatch
22 Singular error

12 Stack clash
23 Flash is full

13 Bad mode error
EVEN?
$\mathbf{x} \rightarrow \mathbf{x}$
TEST
Test if x is integer and even.
\mathbf{e}^{x}
$x \rightarrow r$
(CPX) (f)
Exponent. See also LN.
ExpF
$-\rightarrow$ -
MODE
Set the exponential curve fit model

$$
R(x)=a_{0} e^{a_{1} x}
$$

Expon 2	$x \rightarrow p$
Expon $_{p}$	$x \rightarrow r$
Expon $_{u}$	$x \rightarrow p$
Expon $^{-1}$	$p \rightarrow x$

Exponential distribution, λ in J.
EXPT
$x \rightarrow r$
X.FCN

Exponent h of the number $\mathrm{x}=\mathrm{m} \cdot 10^{\mathrm{h}}$. Compare MANT.
$\mathrm{e}^{\mathrm{x}}-1$
For $x \approx 0$, returns a more accurate result for the fractional part than e^{x} does. See also LN1+x.

FAST

- \rightarrow -

MODE
Set the processor speed to 'fast'. This is startup default and is kept for fresh batteries.
Compare SLOW.
FB n
m \rightarrow r
X.FCN

Invert ('flip') the n-th bit in x .
FC? n

- \rightarrow -

TEST
Test if the n-th user flag is clear.
FC?C n
$-\rightarrow$ -
TEST
FC?F n
FC?S n
Test if the n-th user flag is clear. Clear, flip, or set this flag after testing.

$$
\text { FF n } \quad-\rightarrow-
$$

P.FCN

Flip the n-th user flag.
FIB $\quad \mathbf{x} \rightarrow \mathbf{r} \quad$ CPX X.FCN

INT: Fibonacci number.
DECM: extended Fibonacci number.

FILL

$\mathrm{x} \rightarrow$... xx
(CPX) (g)
Copy x to all stack levels.
FIX n
Fixed point display format.
FLASH?
$-\rightarrow r$
Number of free words in FM.

FLOOR
$\mathbf{x} \rightarrow \mathbf{r}$
X.FCN

Largest integer $\leq x$.
FP
$x \rightarrow r$
CPX g
Fractional part of x .
FP?
$\mathbf{x} \rightarrow \mathbf{x}$
TEST
Test if x has a nonzero fractional part.
FRACT

- \rightarrow -

MODE
Switch to fraction display mode, keep the format as set by PROFRC or IMPFRC earlier.

FS? n
$-\rightarrow$ -
TEST
Test if n-th user flag is set.
FS?C n
$-\rightarrow-$
TEST
FS?F n
FS?S n
Test if n-th user flag is set. Clear, flip, or set this flag after testing.
$F_{p}(x)$
r
$F_{u}(x)$
$x \rightarrow p$
F(x)
$\mathbf{x} \rightarrow \mathrm{p}$
$\mathrm{F}^{-1}(\mathrm{p})$
$\mathrm{p} \rightarrow \mathrm{x}$
Fisher's F-distribution. The degrees of freedom are in J and K.
$f^{\prime}(x)$ lbl $\quad \mathbf{x} \rightarrow \mathbf{0} \mathbf{0} \mathbf{O f}^{\prime}$
P.FCN

First derivative of the function $f(x)$ at position
x . $\mathrm{f}(\mathrm{x})$ must be specified in a routine starting with LBL lbl. After return, Y, Z, and T are cleared x is in L.
$f^{\prime}(x)$ looks for a user routine labeled ' δx ',
which returns a fixed step size dx in X. If ' δx ' is not defined, $d x=0.1$. Then, $f^{\prime}(x)$ evaluates $f(x)$ at ten points equally spaced in the interval $x \pm 5 d x$. If you expect any irregularities within this interval, change δx to exclude them.

f'"(x) lbl $\quad \mathrm{x} \rightarrow \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{f \prime}^{\prime \prime}$
 P.FCN

Like $f^{\prime}(x)$ but return the second derivative.
GCD

$$
y x \rightarrow r
$$

X.FCN

Greatest Common Divisor of x and y. Always positive.

gCLR s
 $y x \rightarrow-$
 P.FCN

Clear the pixel at position x, y in the graphic block starting at register address s. Valid ranges are $0 \leq x \leq w-1$ and $0 \leq y \leq h-1$. Pixel 0,0 is top left. See gDIM for more.
g_{d}

| $\mathbf{x} \rightarrow \mathbf{r}$ | CPX X.FCN |
| :--- | :--- | :--- |
| $\mathbf{x} \rightarrow \mathbf{r}$ | CPP X.FCN |

Gudermann function and its inverse.

$$
g_{d}(x)=\int_{0}^{x} \frac{d \xi}{\cosh \xi}, g_{d}^{-1}(x)=\int_{0}^{x} \frac{d \xi}{\cos \xi}
$$

gDIM s
$y \mathbf{x} \rightarrow \mathbf{y x}$
P.FCN

Initialize a set of registers (a graphic block) for graphic data starting at address s, featuring $x(\leq 166)$ pixel columns and y pixel rows. For $\mathrm{x} \leq 0$, the width w is set to 166 . For $\mathrm{y} \leq 0$, the height h is set to 8 . The first two bytes in the block are reserved to hold w and $\breve{h}=$
$\left\lfloor\frac{h+7}{8}\right\rfloor$
The number of registers needed for the set is $n=\left[\frac{w \cdot \breve{h}+9}{8}\right\rfloor$ in startup standard mode. E.g. 21 registers are required for maximum width and standard height.
The command can be exactly emulated in integer mode by storing $256 \cdot \breve{h}+w$ in the first register and clearing the rest. See 昷PLOT.
gDIM? s

- \rightarrow h w
P.FCN

Recall $\mathrm{Y}=\mathrm{h}$ and $\mathrm{X}=\mathrm{w}$ for a graphic block starting at address s. See gDIM for more.

Geom
Geomp
$x \rightarrow p$
$x \rightarrow r$
Geomu $_{u}$
Geom ${ }^{-1}$
$\mathbf{x} \rightarrow \mathbf{p}$
$\mathrm{p} \rightarrow \mathrm{x}$
Geometric distribution: The cdf returns the probability for a first success after $m=x$ Bernoulli experiments. The probability p_{0} for a success in each such experiment is in J .
gFLP s
$y x \rightarrow-$
$y x \rightarrow y x$
P.FCN

TEST
gPIX? s

PROB

Flip or test the pixel at position x, y in the graphic block at address s. See gCLR for more.
gPLOT s $\quad \rightarrow-$ P.FCN
Display the top left sector of the graphic block (starting at address s) in the dot matrix section of the LCD. See gDIM for more.

GRAD - \rightarrow -

Set angular unit to gon (grad).

GRAD \rightarrow $\mathbf{x} \rightarrow \boldsymbol{\theta}$
Convert angle of x on (grad) the current anguar unit.

SET s
$y x \rightarrow-$
P.FCN

Set the pixel at position x, y in the graphic block starting at address s. See gCLR for more.

GTO lbl
$-\rightarrow$ -
GTO A or B C - position at label GTD \triangle - top of current program
GTO V - top of next program
GTO - step 000
GTD α
$-\rightarrow$ -
P.FCN

Take the first three characters of alpha (or all if there are fewer than three) as a label and positions the program pointer to it.
H_{n}
$\mathbf{n x} \rightarrow \mathbf{r}$
X.FCN
H_{np}
Hermite polynomials for probability $\left(\mathrm{H}_{n}\right)$ and for physics $\left(H_{n p}\right)$.

$$
\begin{aligned}
& H_{n}(x)=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n}}{d x^{n}}\left(e^{-\frac{x^{2}}{2}}\right) \\
& H_{n p}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
\end{aligned}
$$

H. MS $\mathbf{x} \rightarrow \mathbf{x}$
Display X (containing decimal hours or degreen), in the format $\mathrm{hh} h{ }^{\circ}{ }^{\circ} \mathrm{mm}$ 'ss .dd" temporacily until any key.

Add or subtract times or degrees in the format hhhh.mmssdd in X and Y .

IDIV

$y x \rightarrow r$
(CPX X.FCN
Integer division, like / IP in DECM and like / in integer modes.

IMPFRC

$-\rightarrow-$
g d/c
Fraction display mode. Displays numbers as improper fractions (e.g. 5/3 instead of $12 / 3$). Numbers $|x| \geq 100,000$ display as decimals. Compare PROFRC.

INC s
$-\rightarrow$ -
P.FCN

Increment s by 1 .
INTM?
$-\rightarrow$ -
TEST
Test if WP 34S is in integer mode.
INT?
$\mathbf{x} \rightarrow \mathbf{x}$
TEST
Test if x is integer. Compare FP?.
IP
$x \rightarrow r$
(CPX) (f)
Integer part of x .
iRCL s
$-\rightarrow r$
X.FCN

Interpret s as integer data and recall it.
ISE s

- \rightarrow -
P.FCN

Like ISG but skip if $\operatorname{cccc} c c c \leq f f f$
ISG s

- \rightarrow -

Given cccccc.fffii in s, ISG increments s by ii, skipping next program line if then ccccccc>fff. If s has no fractional part then $\mathrm{fff}=0$, and $i i=1$.

Neither fff nor ii can be negative, but cccccc can.

ISZ s

$-\rightarrow$ -
P.FCN

Increment s by 1, skipping next program line if $|\mathrm{s}|<1$.

I β
$\mathbf{z y x} \rightarrow \mathbf{r}$
X.FCN

Regularized (incomplete) beta. See also β
$I_{\beta}=\frac{\beta_{x}(x, y, z)}{\beta(y, z)}$,
$\left(\beta_{x}(x, y, z)=\int_{0}^{x} t^{y-1}(1-t)^{z-1} d t\right)$
$I \Gamma_{p}$
$y x \rightarrow r$
X.FCN
$I \Gamma_{q}$
Regularized (incomplete) gamma function (two flavors). See also $\gamma_{X Y}, \Gamma_{X Y}$

$$
I \Gamma_{p}(x, y)=\frac{\gamma(x, y)}{\Gamma(x)}, I \Gamma_{q}(x, y)=\frac{\Gamma_{u}(x, y)}{\Gamma(x)}
$$

JG1582

- \rightarrow -

MODE
JG1752
Set one of two dates of the Gregorian calendar introduction in different large areas of the world (1582-10-15 and 1752-09-14). Affects $\mathrm{D} \rightarrow \mathrm{J}$ and $\mathrm{J} \rightarrow \mathrm{D}$.
$J \rightarrow$ D

$$
\mathrm{x} \rightarrow \mathrm{dc}
$$

X.FCN

Convert x as a Julian day number to a date according to JG... and date format settings.

KEY? s
$-\rightarrow$ -
TEST
Test if a key was pressed while a program was running or paused. If no key was pressed in that interval, the next program step after

KEY? is executed, else it is skipped and the code of pressed key is stored in s. Key codes reflect the rows and columns on the keyboard.

KTP? s $-\rightarrow r$
P.FCN

Key type of a key code in s (see KEY?).

* 0 ... 9 if digit 0 ... 9,
* 10 if \square, EEX, or + +/ ,
* 11 if f, g, or h
* 12 if any other key.

LASTx
$-\rightarrow r$
(CPX RCL \mathbf{L}
Use RCL L in place of LASTx. Complex version takes imaginary part from reg. I

LBL lbl
 - \rightarrow -

Identify programs and routines for execution and branching.

LBL? lbl $-\rightarrow$ -

TEST
Test for the existence of the label anywhere in program memory.

LCM
$\mathbf{y x} \rightarrow \mathbf{r}$
X.FCN

Least Common Multiple of x and y. Always positive.

LEAP?

$$
\begin{aligned}
\mathrm{dc} & \rightarrow \mathrm{dc} \\
\mathrm{~m} & \rightarrow \mathrm{~m}
\end{aligned}
$$

TEST

If X is a date in the date format, extract the year, and test for a leap year. If X is integer, test if it is leap year.

LgNrm
$\mathrm{LgNrm}_{\mathrm{p}}$
LgNrm_{u}
LgNrm^{-1}
$\mathbf{x} \rightarrow \mathrm{p}$
PROB

Lognormal distribution with $\mu=\ln (\overline{\mathrm{x}})$ in J and $\sigma=\ln \varepsilon$ in K. See \bar{x}_{g} and ε below.
$\mathrm{LgNrm}{ }^{-1}$ returns x for a given probability p in X , with μ in J and σ in K .

LINEQS
mat vec $\mathbf{i} \rightarrow \mathbf{r}$
MATRIX
Solve a system of linear equations $\mathrm{Z} \cdot \mathrm{X}=\mathrm{Y}$.
Take a base register number in X , a vector descriptor in Y, and a descriptor of a square matrix in Z. Return the filled in vector descriptor in X .

LinF

$-\rightarrow$ -
MODE
Set linear curve fit model

$$
R(x)=a_{0}+a_{1} x
$$

LJ
$\mathbf{m} \rightarrow \mathbf{y x}$
X.FCN

Left justify a bit pattern within the word size. Left justified word is placed in Y and the count (number of bitshifts necessary to left justify the word) in X.
Example: for word size $8,10110_{2} \mathrm{LJ}$ results in $\mathrm{x}=3$ and $\mathrm{y}=10110000_{2}$.

LN

$$
x \rightarrow r
$$

(CPX) 9
Natural logarithm of x .

L_{n}	$n x \rightarrow r$	X.FCN
$L_{n} \alpha$	$\alpha n x \rightarrow r$	X.FCN

Laguerre polynomials and generalized polynomials.

$$
\begin{gathered}
L_{n}(x)=L_{n}^{(0)}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right) \\
L_{n}^{(\alpha)}(x)=\frac{x^{-\alpha} e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n+\alpha} e^{-x}\right)
\end{gathered}
$$

LN1+X $\mathbf{x} \rightarrow \mathbf{r} \quad$ (cpx X.FCN
For $x \approx 0$, this returns a more accurate result for the fractional part than $\ln (x)$ does.

LN β
$\mathbf{y x} \boldsymbol{r} \quad$ CPX X.FCN
Natural logarithm of Euler's Beta function. See β.

LN $\quad \mathbf{x} \rightarrow \mathbf{r} \quad$ (CPX X.FCN
Natural logarithm of $\Gamma(\mathrm{x})$.

LOAD

$-\rightarrow$ -
P.FCN

Restore the entire backup from FM, i.e. execute LOADP, LOADR, LOADSS, LOADS, and display Restored. Not programmable. Compare SAVE.

LOADP

 $-\rightarrow$ -P.FCN

Load the complete program memory from the backup and append it to the programs already in RAM. This only works if there is enough space, otherwise an error is thrown. Not programmable.

LOADR

\rightarrow -
P.FCN

Recover numbered general purpose registers from the backup (see SAVE). Lettered registers are not recalled. The number of registers copied, is the minimum number of the registers in the backup and in RAM.

Recover the system state from the backup.

LOADE

\rightarrow -
P.FCN

Recover the summation registers from the backup. Throw an error if there are none.

LocR n

- \rightarrow -
P.FCN

Allocate n local registers (≤ 144) and 16 local flags for the current subroutine.

LocR?
$-\rightarrow r$
P.FCN

Number of local registers currently allocated.
LOG $_{10}$
$x \rightarrow r$
(CPX g LG

Inverse of 10^{x}
LOG $_{2}$
$x \rightarrow r$
(CPX G)LB
Inverse of 2^{x}
LogF

- \rightarrow -

MODE
Set logarithmic curve fit model

$$
R(x)=a_{0}+a_{1} \ln x
$$

Logis
$\mathrm{x} \rightarrow \mathrm{p}$
Logisp
$x \rightarrow r$
Logis $_{u}$
$x \rightarrow p$
Logis ${ }^{-1}$
$p \rightarrow x$
PROB

Logistic distribution with μ in J and s in K .
LOG $_{x}$

$$
y x \rightarrow r
$$

$$
\operatorname{cpx}(9
$$

Logarithm of y for the base x.

LZOFF

$-\rightarrow$ -
MODE
LZON
Toggle leading zeros display. Relevant in bases $2,4,8$, and 16 only.

Return the parameters a_{1} and a_{0} of the fit curve through the data points accumulated in the summation registers, according to the curve fit model selected (see LINF, EXPF, POWERF, and LOGF). For a straight line (LINF), a_{0} is the y -intercept and a_{1} the slope.
MANT $\quad \mathbf{x} \rightarrow \mathbf{r} \quad$ X.FCN

Mantissa m of the number $\mathrm{x}=\mathrm{m} \cdot 10^{\mathrm{h}}$. Compare EXPT.

MASKL n $-\rightarrow r$
MASKR n
Generate a bit pattern where lowest (MASKL) or highest (MASKR) n bits are set.
Example: For WSIZE 8, MASKL 3 returns a mask word $11100000{ }_{2}$.

MAX
$\mathbf{y x} \rightarrow \mathbf{r}$
X.FCN

Maximum of x and y.
MEM?
$-\rightarrow r$
P.FCN

Number of free words in program memory, taking into account the local registers.

MIN
$\mathbf{y x} \rightarrow \mathbf{r}$
X.FCN

Minimum of x and y.
MIRROR
m $\rightarrow \mathbf{r}$
X.FCN

Reflect the bit pattern in x (e.g. 000101112 becomes 111010002 for word size 8).

MOD $\mathbf{y x} \rightarrow \mathbf{r}$
X.FCN
$y \bmod x$. Compare RMDR.

Extract month number from a date.
MROW+x $\quad \mathbf{t z y x} \boldsymbol{y} \mathbf{t y x} \quad$ MATRIX
Take a matrix descriptor x, a destination row number y , a source row number z , and a real number t . Multiply each element $\mathrm{m}_{z i}$ of (X) by t and add it to m_{yi}. The stack remains unchanged.

MROW×
$\mathbf{z y x} \rightarrow \mathbf{z y x}$
MATRIX
Take a matrix descriptor x, a row number y, and a real number z. Multiply each element m_{yi} of (X) by z .

MROW \rightleftarrows
$\mathbf{z y x} \rightarrow \mathbf{z y x}$
MATRIX
Take a matrix descriptor x and two row numbers y and z. Swap the contents of rows y and z in (X). The stack remains unchanged.

MSG n $-\rightarrow$ -
P.FCN

Show the message for error n. This will be a temporary message. Compare ERR.

M+x
$z y x \rightarrow r$
MATRIX
Take two matrix descriptors x and y, and a real number z . Return $(\mathrm{X})+(\mathrm{Y}) \cdot \mathrm{z}=(\mathrm{X})$. Thus a scalar multiple of one matrix is added to another matrix. The multiply/adds are done in internal high precision and results should be exactly rounded.
M^{-1}
mat \rightarrow mat
MATRIX
Inverts square matrix in place. Doesn't alter the stack.

M-ALL mat $\rightarrow \mathbf{r}$ MATRIX
Take a matrix descriptor in X and return a value suitable for ISG or DSL looping in that matrix. The loop shall process all elements in (X). The loop counter is for DSL if the descriptor was negative and for ISG otherwise.

M-COL

$$
y \text { mat } \rightarrow r
$$

MATRIX
Loop counter for processing all elements $\mathrm{m}_{\text {iy }}$ of the matrix column y only. See M-ALL

M-DIAG mat $\rightarrow r$ MATRIX Loop to process all elements along the matrix diagonal, i.e. all elements $m_{i i}$ in (X). See M-ALL

M-ROW
y mat $\rightarrow r$
MATRIX
Loop counter for processing all elements m_{yi} of matrix row y only. See M-ALL

M×
$\mathbf{z y x} \rightarrow \mathbf{r}$
MATRIX
Take two matrix descriptors y and z, and the integer part of x as the base address of the result. Returns $(Z) \cdot(Y)=(X)$. All calculations are done in internal high precision (39 digits). The fractional part of x is updated to match the resulting matrix - no overlap checking is performed.
M. COPY mat $\mathbf{i} \rightarrow \mathbf{r}$

MATRIX
Take a matrix descriptor in Y and a base register number in X . Copy the matrix (Y) into registers starting at Rx. Return a properly formatted matrix descriptor in X.
M.DY
\rightarrow -
MODE
Set the mm.ddyyyy date format. ter i represents. Compare M. REG.
M.LU mat $\rightarrow \mathbf{r} \quad$ MATRIX

Take a descriptor of a square matrix in X .
Transform (X) into its LU decomposition insitu. The value in X is replaced by a descriptor that defines the pivots that were required to calculate the decomposition. The most significant digit is the pivot for the first diagonal entry, the next most significant for the second and so forth.
M. REG
crmat $\rightarrow \mathbf{i}$
MATRIX
Take a matrix descriptor in X, a row number in Y, and a column number in Z. M. REG returns the register number in X . Compare M.IJ.
M. SQR?
mat \rightarrow mat
MATRIX
Test if a matrix descriptor x defines square matrix.

NAND

$y x \rightarrow r$
X.FCN
$\neg(\mathrm{x} \wedge \mathrm{y})$. See AND.
NaN?

$$
x \rightarrow x
$$

TEST
Test x for being 'Not a Number'.
nBITS
$x \rightarrow \mathbf{r}$
X.FCN

Count set bits in x .

Number of columns of matrix (X).

Nearest machine-representable number to x in the direction toward y in the mode set. For $\mathrm{x}<\mathrm{y}$ (or $\mathrm{x}>\mathrm{y}$), this is the machine successor (or predecessor) of x ; for $\mathrm{x}=\mathrm{y}$ it is y .

NEXTP
$x \rightarrow r$
X.FCN

Next prime number greater than x.
NOP
\rightarrow -
X.FCN

Empty step
NOR

$$
y x \rightarrow r
$$

X.FCN
$\neg(x \vee y)$. See AND.

Norml	$x \rightarrow p$
Norml $_{p}$	$x \rightarrow r$
Norml $_{u}$	$x \rightarrow p$
Norml $^{-1}$	$p \rightarrow x$

Normal distribution with an arbitrary mean μ in J and a standard deviation σ in K .

NOT
$x \rightarrow r$
INT: Invert x bitwise.
DECM: 1 for $\mathrm{x}=0$, and 0 for $\mathrm{x} \neq 0$.
nROW
mat $\rightarrow \mathbf{r}$
MATRIX
Number of rows of matrix (X).
n Σ $-\rightarrow r$

SUMS
Number of accumulated statistical data points.

ODD

$$
\begin{equation*}
x \rightarrow x \tag{TEST}
\end{equation*}
$$

Test if x is integer and odd.

Turn off your WP 34S.

OR

$$
\begin{equation*}
\mathrm{yx} \rightarrow \mathrm{r} \tag{h}
\end{equation*}
$$

See AND

PERM

$y x \rightarrow r$
(CP) (g)
Number of possible arrangements of y items taken x at a time. Compare COMB.

$$
P_{x, y}=\frac{y!}{(y-x)!}
$$

P_{n}
$n x \rightarrow r$
X.FCN

Legendre polynomials.

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{2}\right]
$$

Poiss

$$
\begin{equation*}
x \rightarrow p \tag{PROB}
\end{equation*}
$$

Poissp

$$
\mathbf{x} \rightarrow \mathbf{r}
$$

Poissu
$x \rightarrow p$
Poiss ${ }^{-1}$
$p \rightarrow x$
Poisson distribution with the number of successes in X , the gross error probability p_{0} in J , and the sample size n in K. The Poisson parameter is calculated automatically. See Pois λ.

Pois λ^{2}	$x \rightarrow p$
Pois λ_{p}	$x \rightarrow r$
Pois λ_{u}	$x \rightarrow p$
Pois λ^{-1}	$p \rightarrow x$

Pois λ works like Poiss but with λ in J and without using K.

Pop the local registers allocated to the current routine without returning. See LocR and RTN.

PowerF

- \rightarrow -

MODE
Set power curve fit model

$$
R(x)=a_{0} x^{a_{1}}
$$

PRCL
CAT: RCL
Copy the current program (from FM or RAM) and appends it to RAM, where it can then be edited. Can have duplicate program labels in RAM. Only works with enough space at destination.

PRIME?
$\mathbf{x} \rightarrow \mathbf{x}$
TEST
Test if the absolute value of the integer part of x is a prime. The method is believed to work for integers up to $9 \cdot 10^{18}$.

PROFRC
$-\rightarrow$ -
fab/c
Set fraction display mode. Display numbers as proper fractions (e.g. $12 / 3$ instead of 5/3). Numbers $|x| \geq 100,000$ display as decimals. Compare IMPFRC.

PROMPT

- \rightarrow -
P.FCN

Display alpha and stop program execution.
PSE n
\rightarrow -
Refresh the display and pause program execution for n ticks (see TICKS), $0 \leq n \leq 99$. The pause terminates when you press a key.

Copy the current program from RAM and append it to the FM library. Not programmable. The program must have at least one alpha LBL, preferably at its beginning. If a program with the same label already exists in the library it is deleted first.

PUTK s

$\rightarrow-$
P.FCN

Stop program execution and place key code from s in the keyboard buffer, resulting in immediate execution of the corresponding keystroke. After that, R/S is required to resume program execution.

RAD
$-\rightarrow$ -
g
Set angular unit to radians.
RAD \rightarrow
$\mathbf{x} \rightarrow \boldsymbol{\theta}$
X.FCN

Convert x radians to current angular unit.

RAN\#

$-\rightarrow r$
DECM: random number between 0 and 1 .
INT: random bit pattern for the word size set.
RCL s
$-\rightarrow r$
CPX)
Recall the number from the source register.
RCLM s
$-\rightarrow$ -
RCLMODE
Recall modes stored by STOM. No need to press h.

RCLS s $-\rightarrow$...tzyx P.FCN

Recall 4 or 8 values from a set of registers starting at address s , and push them on the
stack. This is the converse command of STOS.

RCL+ s	$\mathbf{x} \rightarrow \mathbf{r}$	CPX
RCL- s		(CPX)
RCL× s		CPX
RCL/ s		(cPx)
RCL^ s		RCL \triangle
RCL $\downarrow \mathrm{s}$		RCL $\bar{\square}$

Recall s, execute operation and push the result on the stack. E.g. RCL-12 subtracts r12 from x and displays the result (acting like RCL 12 -, but without losing a stack level). ${ }^{〔}$ RCL12 subtracts r12 from x and r 13 from y . RCL $\uparrow(\downarrow)$ replaces x with the maximum (minimum) of s and x.

RDP n $\mathrm{x} \rightarrow \mathrm{r}$
X.FCN

Round x to n decimal places ($0 \leq n \leq 99$), taking the RM setting into account. See RM and compare RSD.

RDX
RDX,

- \rightarrow -

Toggle the radix mark.
REALM?
$-\rightarrow-$
TEST
Test if in real mode (DECM).
RECV
$-\rightarrow-$
P.FCN

Prepare to receive data via serial I/O. See SEND...

REGS n - \rightarrow -

MODE
Specify the number of global general purpose registers. $0 \leq n \leq 100$

Number of global general purpose registers (0...100).

RESET

$-\rightarrow$ -
P.FCN

If confirmed, execute CLALL and reset all modes to start-up default, i.e. 24h, 2COMPL, ALL 0, DBLOFF, DEG, DENANY, DENMAX 0, D.MY, E3ON, LinF, LocR 0, LZOFF, PROFRC, RDX., REGS 100, SCIOVR, SEPON, SSIZE4, WSIZE 64, and finally DECM. See these commands for more. Not programmable.

RJ $\mathbf{m} \rightarrow \mathbf{y x}$
X.FCN

Right justify. Example: 101100 RJ results in $\mathrm{Y}=1011$ and $\mathrm{X}=2$. See LJ.

RL n	$x \rightarrow r$	$X \cdot F C N$
RLC n	$x \rightarrow r$	$X \cdot F C N$

Rotate left/rotate left through carry. For RL, $0 \leq n \leq 63$. For RLC, $0 \leq n \leq 64$.

RM n
$-\rightarrow$ -
MODE
Set floating point rounding mode. This is only used when converting from the high precision internal format to packed real numbers. It will not alter the display nor change the behavior of ROUND. The following modes are supported:
0 : round half even; 0.5 rounds to next even number (default).
1: round half up; 0.5 rounds up ('businessman's rounding').
2: round half down; 0.5 round down.
3: round up; round away from 0 .

4: round down; round towards 0 (truncate).
5: ceiling; round towards $+\infty$.
6 : floor; round towards $-\infty$.
RMDR
$\mathbf{y x} \rightarrow \mathbf{r}$
Remainder of a division. Works for real numbers as well. Compare MOD.

RM?
$-\rightarrow r$
P.FCN

Floating point rounding mode. See RM for details.

ROUND

$$
x \rightarrow r
$$

(CPX) \square
Round x using the current display format. In fraction mode, round x using the current denominator.

ROUNDI

$x \rightarrow r$
X.FCN

Round x to next integer. $1 / 2$ rounds to 1 .
RR $n \quad x \rightarrow r \quad$ X.FCN

RRC n
Rotate right/rotate right through carry. For $R R, 0 \leq n \leq 63$. For RRC, $0 \leq n \leq 64$.

RSD n
$x \rightarrow r$
X.FCN

Round x to n significant digits, taking the RM setting into account. See RM and compare RDP.

RTN $-\rightarrow$ g
Execution: Last command in a typical routine. Pop the local data (like PopLR) and return control to the calling routine in program execution, i.e. moves the program pointer one step behind the XEQ instruction that called
the routine. If there is none, program execution halts and the program pointer is set to a beginning of current program.
Other: Reset the program pointer to 000 in RAM.

RTN+1

- \rightarrow -
P.FCN

Like RTN, but move the program pointer two steps after the XEQ instruction that called said routine. Halt if there is none.

R-CLR $\mathbf{x} \rightarrow \mathbf{x}$
P.FCN
x is in the form sss.nn. Clear nn registers starting with address sss. If $n n=0$, it clears the maximum available.
Example: For $\mathrm{x}=34.567$, R-CLR will clear R34 through R89.
ATTENTION for $n n=0$: For $s s s=0 . . .99$, clearing will stop at the highest allocated global numbered register. For $s s s=100 \ldots 111$, clearing will stop at K . For $s s s \geq 112$, clearing will stop at the highest allocated local register.

R-COPY

$$
x \rightarrow x
$$

P.FCN
x is in the form sss.nnddd. Copy $n n$ registers starting with address sss to $d d d$. If $n n=00$, it will take the maximum available.
Example: For x=7.03045678, r07, r08, r09
will be copied into R45, R46, R47, respectively.
For $\mathrm{x}<0, \mathrm{R}-\mathrm{COPY}$ takes $n n$ registers from backup FM, starting with register number |sss|. Destination is always RAM.
See R-CLR
x is in the form sss.nn. Sort the contents of $n n$ registers starting with address sss. If $n n=0$, it sorts the maximum available.
Example: Assume x=49.0369, r49=1.2, r50= -3.4 , and $\mathrm{r} 51=0$; then R -SORT will return r49 $=-3.4$, r $50=0$, and $\mathrm{r} 51=1.2$.
See R-CLR
R-SWAP
$\mathbf{x} \rightarrow \mathbf{x}$
P.FCN

Like R-COPY but swap the contents of source and destination registers.

$\mathbf{R} \uparrow$		
$\mathbf{R} \downarrow$	$\ldots \rightarrow \ldots$	CCPX
CPD		

Rotate the stack contents one level up or down, respectively.
s
$-\rightarrow \mathbf{s y} \mathbf{~ s x}$
Sample standard deviations s_{y} and s_{x} for the data in statistics registers.

$$
s_{x}=\sqrt{\frac{\sum x_{i}^{2}-n \bar{x}^{2}}{n-1}}
$$

SAVE \rightarrow -
P.FCN

Save user program space, registers and system state to backup FM, and display Saved. Use LOAD... to recall your backup. Not programmable.

SB n
$\mathrm{m} \rightarrow \mathrm{r}$
X.FCN

Set the n-th bit in x .

Scientific display format.

Use SCI mode to display numbers that cannot be displayed in ALL or FIX. Compare ENGOVR, see RESET.

SDL \mathbf{n}	$\mathbf{x} \rightarrow \mathbf{r}$	X.FCN
SDR \mathbf{n}	$\mathbf{x} \rightarrow \mathbf{r}$	X.FCN

Shift digits left (right) by n decimal positions, equivalent to multiplying (dividing) x by 10^{n}. Compare SL and SR for integers.

SEED

$\mathbf{x} \rightarrow \mathbf{x}$
STAT
Store a seed for a random number generator.
SENDA
SENDP
SENDR
SENDE
SENDA sends all RAM data, SENDP - the program memory, SENDR - the global general purpose registers, and SENDE - the summation registers, to the device connected via serial I/O. See RECV.

SEPOF
$-\rightarrow$ -
MODE
SEPON
INT: h .1.
Toggle the digit group separators for integers. Display separators every ...
... four digits in bases 2 and 4,
... two digits in base 16,
... three digits in all other integer bases.

SERR

$-\rightarrow \mathbf{s y} \mathbf{s x}$
Standard errors (i.e. the standard deviations of \bar{x} and \bar{y}) of the statistical data. See s.

$$
s_{E x}=\frac{s_{x}}{\sqrt{n}}
$$

SERR ${ }_{w}$

 $-\rightarrow \mathbf{s x}$Standard error for weighted data, i.e. the standard deviation of \bar{x}_{w}. See \boldsymbol{s}_{w}.

$$
S_{E w}=\frac{s_{w}}{\sqrt{\sum y_{i}}}
$$

SETCHN

Set regional preferences.

SETDAT $\mathrm{dc} \rightarrow \mathrm{dc}$

MODE
Set the date for the real time clock (the emulator takes this information from the PC clock).

SETTIM
tc \rightarrow tc
MODE
Set the time for the real time clock (the emulator takes this information from the PC clock).

SF n
$-\rightarrow$ -
Set the n-th user flag.

SHOW

\rightarrow -
Stack and registers browser.
(n - set current register address (CRA)
($\boldsymbol{\nabla}$ - increment or decrement CRA
\square - turn to local registers

ENTERT or RCL - recall current register
SIGN $\quad \mathbf{x} \rightarrow \mathbf{r} \quad$ CPX X.FCN 1 for $x>0,-1$ for $x<0$, and 0 for $x=0$ or non-numeric data. Complex version returns unit vector of $x+i \cdot y$ in X and Y.

SIGNMT

\rightarrow -
MODE
Set sign-and-mantissa mode for integers.

SIN

$\theta \rightarrow \mathbf{r}$
(CPX) f
Sine of an angle.
SINC
$\theta \rightarrow \mathbf{r}$
(cpx X.FCN
Unnormalized sinc: $\frac{\sin x}{x}$ for $\mathrm{x} \neq 0 ; 1$ for $\mathrm{x}=0$.
SINH
$\mathbf{x} \rightarrow \mathbf{r}$
(CPX) f(HYP
Hyperbolic sine, $\sinh x=\frac{e^{x}-e^{-x}}{2}$
SKIP n
$-\rightarrow$ -
P.FCN

Skip n program steps forwards ($0 \leq n \leq 255$). So e.g. SKIP 2 skips over the next two steps, going e.g. from step 123 to step 126. If SKIP attempts to cross an END, an error is thrown.

SL n
$\mathrm{m} \rightarrow \mathrm{r}$
X.FCN

Shift bits left. $\mathrm{n} \leq 63$.
SLOW
$-\rightarrow$ -
MODE
Set the processor speed to 'slow'. This mode is automatically entered for low battery voltage. Compare FAST.

SLV lbl $\quad \mathrm{x} 1 \times 2 \rightarrow f(x) \mathbf{x n} \mathbf{x}$
Solve the equation $\mathrm{f}(\mathrm{x})=0$, with $\mathrm{f}(\mathrm{x})$ calculated
by the routine at label lbl. Two initial estimates of the root must be supplied in X and Y when calling SLV. For the rest, the user interface is as in the HP-15C. This means SLV returns root in X, the second last x-value tested in Y, and $f\left(\mathrm{X}_{\text {root }}\right)$ in Z. Also, SLV acts as a test, so the next program step will be skipped if SLV fails.
Please refer to the HP-15C Owner's Handbook (Section 13 and Appendix D) for more information about automatic root finding.

SLVQ

$$
a b c \rightarrow r \times 2 \times 1
$$

Solve the quadratic equation

$$
a x^{2}+b x+c=0
$$

and test the result.

* If $r=b^{2}-4 a v \geq 0$, SLVQ returns $-\frac{b \pm \sqrt{r}}{2 a}$ in

Y and X . In a program, the step after SLVQ will be executed.

* Else, SLVQ returns the real part of the first complex root in X and its imaginary part in Y (the 2nd root is the complex conjugate of the first - see CONJ). If run directly from the keyboard, the complex indicator C is lit then - in a program, the step after SLVQ will be skipped.
In either case, SLVQ returns r in Z. Higher stack levels are kept unchanged. L will contain equation parameter c .

SMODE?

$-\rightarrow r$
P.FCN

Integer sign mode :
2 (meaning 'true') for 2's complement,

1 ('true' again) for 1's complement,
0 (i.e. 'false') for unsigned, or
-1 (i.e. 'true') for sign and mantissa mode.

SPEC?

$\mathbf{x} \rightarrow \mathbf{x}$
TEST
Test if x is 'special', i.e. infinite or non-numeric.

SR n
$\mathrm{m} \rightarrow \mathrm{r}$
X.FCN

Shift bits right, $\mathrm{n} \leq 63$.
sRCL s

- \rightarrow r
X.FCN

Interpret contents of s as single precision data and recall it.

SSIZE4

- \rightarrow -

MODE
SSIZE8
Set the stack size to 4 or 8 levels. Register contents will remain unchanged in this operation. The same happens if stack size is modified by any other operation (e.g. by RCLM).

SSIZE?
$-\rightarrow r$
P.FCN

Number of stack levels.

STO s

$\mathbf{x} \rightarrow \mathbf{x}$
(CPX) STO
Save x to register s.
STOM s
$-\rightarrow-$
STOMODE
Store mode settings in s (no need to press
(h). RCLM recalls mode data.
0... 3 LCD contrast setting

4,5 0=DENANY, $1=$ DENFAC, $2=$ DENFIX
6... 19 DENMAX (14 bits for 0 ... 9999)

20 0=PROFRC, $1=$ IMPFRC
21 1=fraction mode is on
$22,230=A L L, 1=F I X, 2=S C I, 3=E N G$

24... 27	Number of decimals (4 bits for 0 ... 11)
28	$0=$ SCIOVR, $1=E N G O V R$
29	$0=$ RDX. 1=RDX,
30	1=E30FF
31	1=SEPOFF
32	1=integer mode
33	1=LZON
34, 35	$1=1 \mathrm{COMPL}, 0=2 \mathrm{COMPL}, 2=$ UNSIGN, $3=$ SIGNMT
36... 39	Integer base (4 bits for $2 . .16$ coded as 1...15)
40... 45	WSIZE (6 bits for 1... 64 coded as 0...63)
46	1=DBLON
47	$0=24 \mathrm{~h}, 1=12 \mathrm{~h}$
48, 49	Print mode $=0 . . .3$, see 昷MODE
50	Not used
51	0=SSIZE4, 1=SSIZE8
52,53	$1=Y . M D, 2=M . D Y, 3=D . M Y$
54, 55	$0=\mathrm{DEG}, 1=\mathrm{RAD}, 2=\mathrm{GRAD}$
56... 58	0=LINF, 1=EXPF, 2=POWERF, $3=$ LOGF, $4=$ BESTF
59	$0=$ FAST, $1=$ SLOW
60... 62	Rounding mode ($0 . . .7$, see RM)
63	0=JG1782, 1 = J G1582

STOP $-\rightarrow$ -
Stop program execution.

STOPW

Stopwatch application based on the real time clock and following the timer of the HP-55.
See also XTAL?
R/S - start/stop the timer
\oplus - set the timer to zero without changing its status (running or stopped).
EEX - hide/show tens of seconds
n n - set current register address (CRA)
ENTERT - store H.MS timer value into current register, increment CRA.
$\boldsymbol{\Delta}, \boldsymbol{\nabla}$ - increment or decrement CRA
\square - same as ENTERT \oplus
(A) - convert timer value to H.d and add to statistics registers
\pm - same as A (.
(RCL) $n n$ - recall rnn without changing status EXIT - leave application. If counting, timer continues to count, indicated by small ' $=$ ' annunciator.

STOS s
$-\rightarrow$ -
P.FCN

Store all current stack levels in a set of 4 or 8 registers, starting at destination address s. See RCLS.

STO+	$\mathbf{x} \rightarrow \mathbf{x}$	CPX
STO-		CPX
STOx		PPX
STO/		CPX)
STO^		STO \triangle
STO \downarrow		STO $\overline{7}$

Execute the specified operation on s and store the result there. \uparrow is maximum, \downarrow is minimum. E.g. STO-12 subtracts x from r12 like the keystrokes RCD12 $x^{2} \geqslant y-$ STO 12 would do, but the stack remains unchanged.

SUM $\rightarrow \Sigma y \Sigma x$

STAT
Recall the linear sums Σy and Σx. Also useful for elementary vector algebra in 2D.
S_{w}
$-\rightarrow r$
STAT
Standard deviation for weighted data (where the weight y of each data point x was entered via $\Sigma+$). See \bar{x}_{w}, compare SERR $_{w}$

$$
\mathrm{s}_{w}=\sqrt{\frac{\sum y_{i} \sum y_{i} x_{i}^{2}-\left[\sum y_{i} x_{i}\right]^{2}}{\sum\left(y_{i}-1\right) \sum y_{i}}}
$$

\mathbf{S}_{XY}
$-\rightarrow r$
STAT
Sample covariance for the two data sets entered via $\Sigma+$. It depends on the fit model. For linear fit

$$
\mathrm{s}_{X Y}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n(n-1)}
$$

See COV for the population covariance.
TAN
$\theta \rightarrow r$
(CPX (f)
Tangent of an angle.
TANH
$x \rightarrow r$
(CPx) f(HYP
Hyperbolic tangent of $\mathrm{x} . \tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}$

TICKS

$-\rightarrow \mathbf{r}$
P.FCN

Number of ticks from the real time clock. With the crystal oscillator installed, 1 tick is 0.1 s . Without, it may be some 10% more or less. TICKS does not require crystal.

TIME

\rightarrow tc
X.FCN

Time from the real time clock at in the format hh.mmss. See XTAL?
T_{n}
$n x \rightarrow r$
X.FCN

Chebychev polynomials of first kind.

$$
\left(1-x^{2}\right) f^{\prime \prime}(s)-x f^{\prime}(x)+n^{2} f(x)=0
$$

TOP? $-\rightarrow$ -

TEST
Tests false if called in a subroutine, true if the
program-running flag is set and the subroutine return stack pointer is clear.

TRANSP mat $\rightarrow \mathbf{r}$

MATRIX
Take a matrix descriptor x and return the descriptor of its transpose. The transpose is done in-situ and does not require any additional memory.

$t_{p}(x)$	$x \rightarrow r$
$t_{u}(x)$	$x \rightarrow p$
$t(x)$	$x \rightarrow p$
$t^{-1}(p)$	$p \rightarrow x$

PROB

Student's t distribution. The degrees of freedom are stored in J.
$t \rightleftarrows \mathbf{s}$
... \rightarrow...
P.FCN

Swap T and s. See $\mathrm{x} \rightleftarrows$.
ULP
$x \rightarrow r$
X.FCN

1 times the smallest power of ten which can be added to x or subtracted from x to actually change the value of x in the mode set. 1 in integer mode.
U_{n}
$n x \rightarrow r$
X.FCN

Chebychev polynomials of second kind with n in Y. They are solutions to
$\left(1-x^{2}\right) f^{\prime \prime}(s)-3 x f^{\prime}(x)+n(n+2) f(x)=0$
UNSIGN

- \rightarrow -

MODE
Set unsigned integer mode.

VERS

$-\rightarrow$ -
X.FCN

Show firmware version and build number.

Show s until a key is pressed.

VIEWa	$\rightarrow-$	P.FCN
		Input: VIEW -

Display alpha in the top row and - - in the bottom row until next key is pressed.

VWa+ s $\quad-\rightarrow$ -
P.FCN

Input: h VIEW
Display alpha in the top row and s in the bottom row until the next key is pressed.

WHO
$-\rightarrow$ -
X.FCN

Display credits to the brave men who made this project work.
WDAY $\quad \mathbf{d c} \rightarrow \mathbf{r} \quad$ X.FCN

Day number of a date. Show day name in the dot matrix. (1=Monday, 7=Sunday).

| W_{m} | $\mathbf{x} \rightarrow \mathbf{r}$ | X.FCN |
| :--- | :--- | ---: | ---: |
| W_{p} | $\mathbf{x} \rightarrow \mathbf{r}$ | CPX $X \cdot \mathrm{X} \cdot \mathrm{FCN}$ |
| \mathbf{W}^{-1} | $\mathbf{x} \rightarrow \mathbf{r}$ | CPXX X.FCN |

W_{p} returns the principal branch of Lambert's
W (solution of $x=W e^{W}$) for given $\mathrm{x} \geq-1 / \mathrm{e} . \mathrm{W}_{\mathrm{m}}$ returns its negative branch.
W^{-1} returns $x e^{x}$ for $\mathrm{x} \geq-1$.

Weibl
Weiblp
$\mathbf{x} \rightarrow \mathrm{p}$
PROB
Weibl $_{u}$
Weibl $^{-1}$
$x \rightarrow r$
$x \rightarrow p$
$p \rightarrow x$
Weibull distribution with its shape parameter b in J and its characteristic lifetime T in K .

Set word size in integer mode. Reducing the word size truncates the values in the stack registers and in L. WSIZE 0 sets the word size to maximum, 64 bits.

WSIZE?

$-\rightarrow r$
P.FCN

Current word size.

\mathbf{x}^{2}	$\mathbf{x} \rightarrow \mathbf{r}$	(CPX (g)
\mathbf{x}^{3}	$\mathbf{x} \rightarrow \mathbf{r}$	CPX) $\left.\begin{array}{l}\text { X.FCN } \\ \hline\end{array}\right)$

Square and cube.

XEQ lbl

- \rightarrow -

Call the subroutine with the label specified.

XEQ α

$\rightarrow-$
P.FCN

Take the first three characters of alpha as a label and execute the respective routine.

XNOR
$y x \rightarrow r$
X.FCN

1 when both inputs are equal. See AND.
XOR
$y x \rightarrow r$
1 when both inputs are different. See AND.
XTAL?
$-\rightarrow$ -
TEST
Test for presence of the crystal necessary for a precise real time clock, DATE, TIME and printing commands.
$\overline{\mathbf{x}}$
$\rightarrow \rightarrow \mathrm{ry} \mathrm{rx}$
Arithmetic means of the x - and y - accumulated data. See also s, SERR, and σ.

Geometric means of the accumulated data.
$\bar{x}_{g}=\sqrt[n]{\prod x_{i}}$. See also $\varepsilon, \varepsilon_{\mathrm{m}}$, and ε_{p}

Arithmetic mean for weighted data (where the weight y of each data point x was entered via $\Sigma+{ }^{+} \bar{x}_{w}=\frac{\sum x_{i} y_{i}}{\Sigma y_{i}}$. See also S_{w} and SERR ${ }_{\mathrm{w}}$.
$\hat{\mathbf{x}}$ $\mathbf{x} \rightarrow \mathbf{r}$
X.FCN

Forecast x for a given y (in X) following the fit model chosen. See L.R. for more.
$\mathrm{x}!$
DECM: $\Gamma(\mathrm{x}+1)$, INT: $\mathrm{x}!$
$\mathbf{x} \rightarrow \boldsymbol{\alpha}$
$\mathbf{x} \rightarrow \mathbf{x}$
X.FCN

Append the character with code x to alpha.
$\mathbf{x} \leftrightarrows \mathbf{s} \quad \mathbf{x} \rightarrow \mathbf{r}$
(CPX) (h
Swap X and s, similar to $\mathrm{x} \rightleftarrows \mathrm{y}$.
$\mathbf{x} \rightleftarrows \mathbf{Y} \quad \mathbf{y x} \rightarrow \mathbf{x y}$
(CPX) (3)
Swap the stack contents x and y. Complex swap displays as ${ }^{〔} \mathrm{X} \rightleftarrows \mathrm{Z}$.

$\mathrm{x}<$? s	$x \rightarrow x$	TEST
$x \leq$? 5	$x \rightarrow x$	TEST
$\mathrm{x}=$? s	$\mathrm{x} \rightarrow \mathrm{x}$	(CPX [f]
$x=+0$?	$x \rightarrow x$	TEST
$x=-\theta$?	$x \rightarrow x$	TEST
$\mathrm{x} \sim$? s	$x \rightarrow x$	TEST
$x \neq$? 5	$x \rightarrow x$	(CPX) g
$x \geq$? s	$\mathrm{x} \rightarrow \mathrm{x}$	TEST
$x>$? s	$\mathrm{x} \rightarrow \mathrm{x}$	TEST

Compare x with s .
$x \approx$? is true if the rounded values of x and s are equal (see ROUND).
The signed tests $x=+0$? and $x=-0$? are meant for integer modes 1COMPL and SIGNMT, and for DECM if flag D is set. In all these cases, e.g. 0 divided by -7 will display -0 .
CPX f $x=$? s and $C P X g x \neq$? s compare the complex number $x+i \cdot y$.
${ }^{x} \sqrt{y}$
$y x \rightarrow r$
(CPX) X.FCN
x-th root of y
YEAR
dc $\rightarrow \mathbf{r}$
X.FCN

Year of a date.
y^{x}
$y x \rightarrow r$
(CPX) ff
In integer modes, x must be ≥ 0.
\hat{y}

$$
x \rightarrow r
$$

Forecast y for a given x following the fit model chosen. See L.R. for more.
Y.MD
$\rightarrow-$
MODE
Set the yyyy.mmdd date format.
$y \rightleftarrows s$
... \rightarrow...
P.FCN

Z \rightleftarrows s
Swap Y or Z with s. See $x \rightleftarrows$ and $t \rightleftarrows$.
α
$-\rightarrow$ -
STO\& \neg INPUT: Turn on alpha mode for keyboard entry of alpha constants. INPUT is set and the previous program step stays displayed until a character is entered. Each such character (e.g. '?') is stored in one program step (such as α ? here) and will be appended
to alpha during program execution.
STO\&INPUT: Turn on alpha group mode for direct entry of up to three characters in one program step taking two words. Your WP 34S will display α ' in the top line. Enter the characters you want to append to alpha.

(h) PSE 1 will result in two program steps stored:
a'Tes'
a't 1'
and Test 1 appended to alpha during program execution.
\neg STO\& \neg INPUT: Enter alpha mode for appending characters to alpha. To start a new string, use CL α first.
\neg STO \&INPUT: Leave alpha mode.
aDATE $\quad \mathbf{d c} \rightarrow \mathbf{d c} \quad$ X.FCN
Append formatted date to alpha. See DATE.
To append a date stamp to alpha, call DATE aDATE. For a short European date stamp, set FIX 2, RDX. and call DATE aRC\# X.
aDAY

$$
\mathrm{dc} \rightarrow \mathrm{dc}
$$

X.FCN

Append first three letters of day of week for date in x to alpha.

बGTO s $-\rightarrow$ -
P.FCN

Take the first three characters of s , interpreted as string, and position the program pointer to the alpha label with same name.
aIP

$$
x \rightarrow x
$$

X.FCN

Append the integer part of x to alpha.
aLENG
Number of characters in alpha.
aMONTH

$$
\mathrm{dc} \rightarrow \mathrm{dc}
$$

X.FCN

Append first three letters of month name for date in x to alpha.
aOFF
$-\rightarrow$ -
P.FCN $\alpha 0 \mathrm{~N}$
Switch alpha mode off and on.
aRCL s
$-\rightarrow$ -
X.FCN

Input: f RCL
Interpret contents of s as string and append it to alpha.
aRC\# s
$\mathbf{x} \rightarrow \mathbf{x}$
X.FCN

Interpret s as a number, convert it to a string in the format set, and append this to alpha.
Example: If s is 1234 and ENG 2 and RDX. are set, then 1.23 e 3 will be appended.
See also aDATE for an application.
aRL n

- \rightarrow -
X.FCN

Rotate alpha left by n characters.
aRR n
$-\rightarrow$ -
X.FCN

Like α RL but rotates to the right.
$\alpha \mathrm{SL} \mathrm{n}$

- \rightarrow -
X.FCN

Shift the n leftmost characters out of alpha.
α SR n
$-\rightarrow$ -
X.FCN

Insert n spaces in the beginning of alpha.

Store the first (leftmost) 8 characters of alpha in the destination s .

аTIME
tc \rightarrow tc
X.FCN

Append formatted time to alpha. See 12 h , 24 h , and TIME. To append a time stamp to alpha, call TIME α TIME.
aXEQ s
$\rightarrow-$
P.FCN

Execute routine with alpha label equal to first
3 characters of s interpreted as string.
$\alpha \rightarrow \mathbf{x}$
$-\rightarrow \mathbf{r}$
X.FCN

Remove first (leftmost) character from alpha and return its code.
$\boldsymbol{\beta} \quad \mathbf{y x} \rightarrow \mathbf{r} \quad$ (CPx X.FCN
Euler's Beta for $\operatorname{Re}(x)>0, \operatorname{Re}(y)>0$.

$$
\mathrm{B}(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

Named β to avoid ambiguity.
$\Gamma \quad \mathbf{x} \rightarrow \mathbf{r} \quad$ CPX X.FCN
$\Gamma(\mathrm{x})$. Additionally, $\mathrm{h} \times$! calls $\Gamma(\mathrm{x}+1)$. See also LNГ.
$\gamma_{x y}$

$$
y x \rightarrow r
$$

X.FCN
$\Gamma_{X Y}$
Lower or upper incomplete gamma function.

$$
\begin{aligned}
\gamma(x, y) & =\int_{0}^{y} t^{x-1} e^{-t} d t \\
\Gamma_{\mathrm{u}}(x, y) & =\int_{y}^{\infty} t^{x-1} e^{-t} d t
\end{aligned}
$$

\triangle DAYS dc1 dc2 \rightarrow r
Number of days between 2 dates.
$\Delta \%$
$y \mathrm{x} \rightarrow \mathrm{yr}$
X.FCN
$100 \frac{x-y}{y}$. Preserves Y.
ε
$-\rightarrow \mathbf{r y r x}$
STAT
Scattering factors ε_{y} and ε_{x} for log-normally distributed sample data. ε_{x} is to the geometric mean x_{g} as the standard deviation s to the arithmetic mean \bar{x} but multiplicative instead of additive.

$$
\ln \varepsilon_{x}=\sqrt{\frac{\sum \ln ^{2} x_{i}-2 n \ln \overline{x_{g}}}{n-1}}
$$

$\boldsymbol{\varepsilon}_{\text {m }}$
$-\rightarrow$ ry rx
Like ε but returns the scattering factors of the two geometric means. $\varepsilon_{m}=\varepsilon^{\frac{1}{\sqrt{n}}}$
ε_{p}
$\rightarrow \rightarrow$ ry rx
STAT
Like ε but returns the scattering factors of the two populations.
ζ $x \rightarrow r$
X.FCN

Riemann's Zeta. Analytical continuation of
$\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}$
π $\rightarrow \pi$
(CPX) h
Recall π.
II lbl $\quad \mathbf{x} \rightarrow \mathbf{r}$
f
Compute a product using the routine lbl. Initially, X contains the loop control number in
the format cccccc.fffii, and the product is set to 1 . Each run through the routine specified by lbl computes a factor. At its end, this factor is multiplied with the product; the operation then decrements cccccc by ii and runs said routine again if then $\operatorname{ccc} c c c=f f f$, else returns the resulting product in X .

σ

$-\rightarrow$ ry rx
STAT
Standard deviations of the two populations. See also s

$$
\sigma_{x}=\frac{1}{n} \sqrt{\sum\left(x_{i}-\bar{x}\right)}
$$

г lbl
$\mathbf{x} \rightarrow \mathbf{r}$
g
Compute a sum using the routine specified at LBL. Initially, X contains the loop control number in the format cccccc.fffii, and the sum is set to 0 . Each run through the routine specified by lbl computes a summand. Then, this summand is added to the sum; the operation then decrements cccccc by ii and repeats until сссссс $\leq f f f$.
$\Sigma \ln ^{2} \mathbf{x}$
$-\rightarrow r$
SUMS
$\Sigma \ln ^{2} y$
$\Sigma \ln x$
Elnxy
Elny
Exlny
Eylnx
Recall the respective statistical sums. These sums are necessary for curve fitting models beyond pure linear. These sums are stored in special registers.

ATTENTION: Depending on input data, some or all of these sums may become non-numeric.
σ_{w}

$$
-\rightarrow r
$$

STAT
Like S_{w} but returns the standard deviation of the population instead.

$$
\sigma_{w}=\sqrt{\frac{\sum y_{i}\left(x_{i}-\bar{x}_{w}\right)^{2}}{\sum y_{i}}}
$$

Σx
$-\rightarrow r$
SUMS
Σx^{2}
$\Sigma x^{2} y$
$\Sigma x y$
Σy
Σy^{2}
Recall the respective statistical sums. These sums are necessary for basic statistics and linear curve fitting. These sums are stored in special registers.

Σ_{+}	$y x \rightarrow y n$	h
$\Sigma-$	$y x \rightarrow y n$	A

$\Sigma+$ adds a data point to the statistical sums.
Shortcut works if label A is not defined.
Σ - subtracts a data point from the statistical sums.
Both functions preserve Y , return number of points in X , disable stack lift.
Both may be used for 2D vector adding and subtracting as well.
$\Phi_{\mathrm{u}}(\mathrm{x})$

$$
x \rightarrow p
$$

Standard normal error probability cdf.
$\varphi(x)$
$x \rightarrow \mathbf{r}$
PROB
Standard normal pdf. $\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$
$\Phi(x)$

$$
x \rightarrow p
$$

Standard normal cdf. $\Phi(x)=\int_{-\infty}^{x} \varphi(t) d t$
$\Phi^{-1}(\mathrm{p})$

$$
\begin{equation*}
p \rightarrow x \tag{g}
\end{equation*}
$$

Inverse of standard normal cdf.
χ^{2}

$$
x \rightarrow p
$$

PROB
χ^{2} INV
$p \rightarrow x$
$\chi^{2} p$
$x \rightarrow r$
$\chi^{2}{ }^{2}$
$\mathbf{x} \rightarrow \mathrm{p}$
χ^{2} distribution, degrees of freedom in J.
$(-1)^{x} \quad x \rightarrow r$
(CPX) X.FCN
$\cos (\pi \cdot x)$ for non-integers.
×MOD

$$
z y x \rightarrow r
$$

X.FCN
$(z \cdot y) \bmod x$ for $x>1, y>0, z>0$.
/

$$
\mathrm{yx} \rightarrow \mathrm{r}
$$

(CPD) \div
y/x. Compare IDIV.
+/-

$$
x \rightarrow r
$$

Unary minus, corresponding to $x \cdot(-1)$ or $x^{c} \cdot(-1)$, respectively.
\rightarrow DATE \quad y md \rightarrow dc
X.FCN

Convert three components of a date (year, month, and day) to a date according to date format. Inverse of DATE \rightarrow.
\rightarrow DEG
$\theta \rightarrow \mathbf{r}$
\rightarrow DEG
Convert x in current angular units to degrees. Prefix gl may be omitted.
\rightarrow GRAD
$\theta \rightarrow \mathbf{r}$
\rightarrow RAD
Like \rightarrow DEG, but converts to gon (grad).
$\rightarrow H R$
$x \rightarrow r$
\rightarrow fin.d
Convert hours or degrees in the format hhhh.mmssdd to a decimal time or angle, allowing for using standard arithmetic operations then.
\rightarrow H.MS

$$
x \rightarrow r
$$

$\rightarrow f$
Convert x as decimal hours or degrees to the format hhhh.mmssdd. See H.MS+, H.MS-.
$\rightarrow \mathrm{POL}$

$$
\begin{equation*}
y x \rightarrow \theta r \tag{g}
\end{equation*}
$$

Assume X and Y contain 2D Cartesian coordinates (x, y) of a point or components of a vector and convert them to the polar coordinates/components (r, θ)
\rightarrow RAD
$\theta \rightarrow \mathbf{r}$
\rightarrow RAD
Like \rightarrow DEG, but converts to radians.
\rightarrow REC
$\boldsymbol{\theta r} \boldsymbol{r} \mathbf{y}$
Assumes X and Y containing 2D polar coordinates (r, θ) of a point or components of a vector and converts them to the Cartesian coordinates or components (x, y).

Ł????
... \rightarrow...
P.FCN

Shuffle the contents of the bottom four stack levels. Examples:
\rightleftarrows XXYZ works like ENTER \uparrow (but does not disable stack lift),
\rightleftarrows YZTX works like R \downarrow,
\rightleftarrows ZTXY works like ${ }^{\mathrm{C}} \mathrm{X} \rightleftarrows \mathrm{y}$,
but \rightleftarrows ZZZX is possible as well.
This command does not affect the higher levels in an 8-level stack.
\%

$$
\mathrm{yx} \rightarrow \mathrm{yr}
$$

$x y / 100$, keeps Y. Disables stack lift.
\%MG
$y x \rightarrow r$
X.FCN

Margin $100 \frac{x-y}{x}$ in $\%$ for a price x and cost y .
\%MRR
$z y x \rightarrow r$
X.FCN

Mean rate of return in percent per period, i.e. $100\left((x / y)^{1 / z}-1\right)$ with $x=$ future value after z periods, $y=$ present value.
For $\mathrm{z}=1, \Delta \%$ returns the same result easier.
\%T
$y \mathbf{x} \rightarrow \mathbf{y r}$
X.FCN
$100^{x} / y$, interpreted as $\%$ of total. Keeps Y.
$\% \Sigma$
$x \rightarrow r$
X.FCN

STAT
$100 \frac{x}{\sum x}$
\%+MG
$y x \rightarrow r$
X.FCN

Calculate a sales price by adding a margin of $\mathrm{x} \%$ to the cost $\mathrm{y} . r=\frac{y}{1-x / 100}$
You may use \%+MG for calculating net amounts as well. Just enter a negative percentage in x .

Example: Total billed $=221,82 €$, VAT $=19 \%$. What is the net?
221,82 ENTERT19 + /-X.FCN $\%+$ MG returns 186,40.
\checkmark

$$
\begin{equation*}
x \rightarrow r \tag{cPx}
\end{equation*}
$$

Square root.
$\int l b l$
$y x \rightarrow r$
g

Integrate the function given in the routine specified. Lower and upper integration limits must be supplied in Y and X, respectively.
Otherwise, the user interface is as in the HP15C.
Please turn to the HP-15C Owner's Handbook (Section 14 and Appendix E) for more information about automatic integration and some caveats.
∞ ?

$$
x \rightarrow x
$$

Test x for infinity.
^MOD
$\mathbf{z y x} \rightarrow \mathbf{r}$
X.FCN
$(z y) \bmod x$ for $x>1, y>0, z>0$.
Example:
ff 10 73 ENTER $\uparrow 55$ ENTER T 31 X.FCN
^MOD returns 26.
II

$$
\begin{equation*}
\mathrm{yx} \rightarrow \mathrm{r} \tag{CPX}
\end{equation*}
$$

$\frac{1}{1 / x^{+1} / y}$, or 0 if x or y is zero.
昌ADV
$-\rightarrow$ -
P.FCN

Print the current contents of the print buffer plus a linefeed. The printer will actually print only when a line feed is sent to it.

ATTENTION：Any printing command works only with a hardware modification or in emu－ lator in combination with a printer emulator． Otherwise，print commands will be ignored． See 㫜？and XTAL？

县CHR n

$\rightarrow-$
P．FCN
Send a single character（with the code n ）to the printer．Character codes $n>127$ can only be specified indirectly．Honor 昌MODE setting． Compare 昌\＃．See 昌ADV．

悬PLOT s

 \rightarrow－ P．FCNSend the graphic block starting at address s to the printer．If its width is 166 ，the data will be trailed by a line feed．See 昌ADV and gDIM．

賭 ${ }^{\prime} \boldsymbol{r l}_{\mathrm{XY}} \mathrm{s}$
\rightarrow－
P．FCN
Print the registers s and $s+1$ ．A semicolon separates both components in the output． Works like 曽r otherwise．

昌DLAY n $-\rightarrow$－

P．FCN
Set a delay of n ticks（see TICKS）to be used with each line feed on the printer．

曷MODE n

 $-\rightarrow$－ P．FCNSet print mode．
0 （default）：Use the printer font and character set wherever possible．All characters feature the same width， 5 pixels +2 pixels．
1：Use the variable pitch display font．
2：Use the small display font．
3：Send the output to the serial channel．
Works for plain ASCII only－no characters
will be translated．Line setup is the same as for serial communication： 9600 baud， 8 bits， no parity．

昌PROG
－\rightarrow－
P．FCN
Print the listing of the current program，one step per line．See 昌ADV．Not programmable．

量r s
$-\rightarrow=$
P．FCN
Prints s，right adjusted，without label．
Shortcut \boldsymbol{T} in run mode prints X ．See
县ADV．
昌REGS
x

P．FCN

Interpret x in the form sss．nn．Print the con－ tents of $n n$ registers starting with number sss． Each register takes one line starting with a la－ bel．
ATTENTION：for $n n=0$ ：
For $\mathrm{s}=0 . . .99$ ，printing stops at the highest al－ located global numbered register．
For $s=100 \ldots 111$ ，printing stops at K．
For $s \geq 112$ ，printing stops at the highest allo－ cated local register．
See also 量ADV．

县STK

$-\rightarrow$－
P．FCN
Print the stack contents．Each level prints in a separate line starting with a label．See 昌ADV．

量TAB n
$-\rightarrow-$
P．FCN
Position the printer head to print column n（ 0 to $165, n>127$ can only be specified indi－
rectly）．If n is less than current position，out－ put linefeed to reach the new position．See昷ADV．

囬WIDTH
$-\rightarrow r$
P．FCN
Number of print columns alpha would take in the print mode set．See 昌ADV and 昌MODE． Second use：in 甼MODE 1 or 2，昌WIDTH re－ turns the width of alpha in pixels（including the last column being always blank）in the specified font．

胃 $\boldsymbol{\alpha}$
$-\rightarrow$－
P．FCN
Append alpha to the print line，trailed by a line feed．Compare 量 $\alpha+$ and 昌 $+\alpha$ ．See 量ADV．

昌 $\boldsymbol{\alpha}^{+}$
\rightarrow－
P．FCN
Send alpha to the printer without a trailing line feed，allowing further information to be appended to this line．May be repeated．See also 昌ADV，昷r and 甼＋α ．

鼻 Σ

\rightarrow－
P．FCN
Print the summation registers．Each register prints in one line starting with a label．See量ADV．

昌 $+\alpha$
$-\rightarrow$－
P．FCN
Append alpha to the print line，adjusted to the right and trailed by a line feed．Compare 昌 α and 昌 $\alpha+$ ．See 昌ADV．

量？
$-\rightarrow$－
P．FCN
Test if the crystal and the necessary firmware are installed for printing．

Send a single byte，without translation，to the printer（e．g．a control code）．$n>127$ can only be specified indirectly．Do not honor 昌MODE． Compare 昌CHR．See 昌ADV．

\＃n

$-\rightarrow r$
（CPX CONST
CPX n
Insert integer constant $0 \leq n \leq 255$ in a single step．${ }^{\text {¢ }}$ w works like \＃but also clears y．The shortcut works only for $1 \leq n \leq 9$ ．

User flags

T－tracing
A－large＂＝＂annunciator
B－＇big＇；overflow in integer modes
C－carry；used in integer operations
D－＇danger＇；allow infinite or non－numeric re－ sults without error

ON combinations

$\square \mathrm{ON}+\square, \mathrm{ON}+-$ increase／decrease LCD contrast．
ON + STO + STO－create a copy of the RAM in BUP，like SAVE．
$0 \mathrm{O}+\mathrm{RCL}+\mathrm{RCL}$－restore RAM from BUP， like LOAD．
ON＋C tell the system that crystal oscillator is installed．（Keep holding ON and press（C） second time to confirm）
ON＋D toggle debugging mode
$0 \mathrm{ON}+\mathbf{S}$ keep holding ON and press S sec－ ond time to clear GPNVM1 bit and turn calcu－ lator off．Works only in debugging mode．

WARNING: this clears the entire firmware and brings calculator in SAM-BA boot mode. You will need a SAM-BA software and communication cable to restore it to operational state.

Copyright notice

Copyright © 2013,2014 Andrew Nikitin Permission is granted to copy and distribute full unmodified electronic version of this document and print it for personal use.

The latest version of this document can be found at http://nsg.upor.net/wp34spr

