# Slide rule operations summary

Short notation is used to describe algorithms in a compact form. See links for more detailed explanations.

## Proportions

See separate page for operations derived from proportions.

## Equations

Formula Scales Algorithm
x2-px+q=0 [CI, D] qCI->1D; |->CI+D=p; |=>D(x1); |=>CI(x2)
1CI->qD; |->CI+D=p; |=>D(x1); |=>CI(x2)
r=q1/2 [CI,D] qCI->1D; |->CI=D; |=>D(r)
x3-px+q=0 [CI, D, A] 1CI->qD; |->A+CI=p; |=>D(x)
x3-px2+q=0 [CI, A] 1CI->qA; |->A+CI=p; |=>CI(x)
r=q1/3 [D, CI, A] 1CI->qD; |->A=CI; |=>D(r)
x4-px+q=0 [D, CI, K] 1CI->qD; |->CI+K=p; |=>D(x)
x4-px3+q=0 [CI, K] 1CI->qK; |->CI+K=p; |=>CI(x)
r=q1/4 [CI, K] 1CI->qK; |->CI=K; |=>CI(r)
[D, K, CI] 1CI->qD; |->CI=K; |=>D(r)
[A, BI, D] 1C->qA; |->A=BI; |=>D(r)
x5-px2+q=0 [A, D, K, BI] 1BI->qA; |->BI+K=p; |=>D(x)
x5-px3+q=0 [A, D, K, BI]
r=q1/5 [A, D, K, BI] 1BI->qA; |->K=BI; |=>D(r)

Formula Scales Algorithm
r=u+v [C,D] 1C->vD; uD=>C(x=u/v); y:=x+1; yC=>D(r)
r=u+v [L] [1L->[1D; |->uL; 1L->|; |->vL; [1L->[1D; |=>L(u+v)
r=u-v [C,D] 1C->vD; uD=>C(x=u/v); y:=x-1; yC=>D(r)
r=u2+v2 [C,D,A,B] 1C->vD; uD=>B(x); y:=x+1; yB=>A(r)
r=u2-v2 [C,D,A,B] 1C->vD; uD=>B(x); y:=x-1; yB=>A(r)
r=sqrt(u2+v2) [C,D,A,B] 1C->vD; uD=>B(x); y:=x+1; yB=>D(r)
r=sqrt(u2-v2) [C,D,A,B] 1C->vD; uD=>B(x); y:=x-1; yB=>D(r)
r=1/u+1/v
r=u-1+v-1
[C,D,CI] 1C->uD; |->vD; |=>CI(x=u/v); y:=1+x; |->yD; |=>C(r)
r=1/(1/u-1/v)
r=(u-1-v-1)-1
[C,D,CI] 1C->uD; |->vD; |=>CI(x=u/v); y:=x-1; |->yD; |=>CI(r)

## Miscellaneous

[ Index page | Emulator | Notation | Deframe | Feedback ]